Food and Biotechnological Applications for Polymeric Beads and Carriers

  • Amos Nussinovitch


The immobilization of microorganisms or cell suspensions in beads for a variety of biotechnological and food purposes is described—information which is hard to find in currently available books. Examples include amino acid (i.e., l-aspartic acid, l-alanine, and l-phenylalanine) production, organic acid (i.e., citric acid, malic acid, gluconic acid, lactic acid) fermentation and conversion, special uses in ethanol, wine, vinegar, and sake production such as: malolactic fermentation, removal of urea from sake and wine by immobilized acid urease, beer brewing using an immobilized yeast bioreactor system, and uses in soy sauce production. Other uses related to miscellaneous flavor materials and aroma compounds are also discussed. These include, but are not limited to, biotransformation from geraniol to nerol, production of limonin, β-ionone, naringin, blue cheese flavor, vanillin, and Japanese seasoning. Special beads that serve for immobilization and are used in the milk industry, e.g., for hydrolysis of lactose in milk, are also detailed. Miscellaneous applications also include production of oligosaccharides, preservatives and bacteriocins, xylitol, carotenoids and leucrose, and cis,cis-muconic acid. Less known uses of enzymes immobilized within beads for food applications are also described. Various industrial options such as fuel ethanol production, application of gels for separation matrices, bioartificial organs, and insect-cell immobilization are included. In general, the chapter attempts to touch upon all of the novel applications of bead-immobilized cells for the food and biotechnology industries, such as the production of aroma compounds, the microbial production of bioflavors and their biotransformation.


Lactic Acid Alginate Bead Calcium Alginate Gluconic Acid Lactic Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Naby, M., Mok, K., and Lee, C. 1992. Production of organic acid from enzymatic hydrolyzate of starch by immobilized lactic acid bacteria. UNIDO Proc., Korea. 227–243.Google Scholar
  2. Abdel-Naby, M. A., Reyad, M. R., and Abdel-Fattah, A. F. 2000. Biosynthesis of cyclodextrin glucosyltransferase by immobilised Bacillus amyloliquefaciers in batch and continuous cultures. J. Biochem. Eng. 5:1–9.CrossRefGoogle Scholar
  3. Abelyan, V. A., and Abelyan, L. A. 1996. Production of lactic acid by immobilized cells in stirred reactors. Appl. Biochem. Microbiol. 32:495–499.Google Scholar
  4. Agathos, S. N. 1993. The future of insect cell culture engineering. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 221–240. New York and Basel: Marcel Dekker, Inc.Google Scholar
  5. Agouridis, N., Bekatorou, A., Nigam, P., and Kanellaki, M. 2005. Malolactic fermentation in wine with Lactobacillus casei cells immobilized on delignified cellulosic material. J. Agr. Food Chem. 53:2546–2551.CrossRefGoogle Scholar
  6. Agouridis, N., Kopsahelis, N., Plessas, S., Koutinas, A. A., and Kanellaki, M. 2008. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine. Bioresource Technol. 99:9017–9020.CrossRefGoogle Scholar
  7. Akao, G., Nagata, S., Osaki, K., and Okamoto, Y. 1982. Continuous production of shoyu-like solution by immobilized lactic acid bacteria and yeast (abstract). Annu. Meet. Soc. Fermentation Technol. Jpn, no. 26.Google Scholar
  8. Arnaud, J. P., Lacroix, C., and Castaigne, F. 1992. Counter diffusion of lactose and lactic acid in k-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microb. Technol. 14:715–724.CrossRefGoogle Scholar
  9. Baker, D. A., and Kirsop, B. H. 1973. Rapid beer production and conditioning using a plug fermenter. J. Inst. Brew. 79:487–494.Google Scholar
  10. Bare, G., Gerard, J., Jacques, P., Delaunois, V., and Thonart, P. 1992. Bioconversion of vanillin into vanillic acid by Pseudomonas fluorescens strain BTP9. Cell reactors and mutants study. Appl. Biochem. Biotechnol. 34/35:499–510.CrossRefGoogle Scholar
  11. Belfort, G. 1989. Report on membranes and bioreactors: a technical challenge in biotechnology. Biotechnol. Bioeng. 33:1047–1066.CrossRefGoogle Scholar
  12. Bergwerff, A. A., and Schloesser, J. 2003. Antibiotics and drugs, residue determination. In: Encyclopedia of Food Science and Nutrition, pp. 254–261. Amsterdam: Academic.CrossRefGoogle Scholar
  13. Bhugaloo Vial, P., Grajek, W., Dousset, X., and Boyaval, P. 1997. Continuous bacteriocin production with high cell density bioreactors. Enzyme Microb. Technol. 21:450–457.CrossRefGoogle Scholar
  14. Bishop, D. L. 1990. Gene expression using insect cells and viruses: current opinion. Biotechnology 1:62–67.Google Scholar
  15. Bongaerts, J., Kramer, M., Muller, U., Raeven, L., and Wubbolts, M. 2001. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3: 289–300.CrossRefGoogle Scholar
  16. Braconnot, H. M. 1820. Sur la conversion des matières animales en nouvelles substances par le moyen de l’acide sulfurique. Ann. Chim. Phys. Ser. 2 13:113–125.Google Scholar
  17. Brandani, V., Giacomo, D. G., and Spera, L. 1996. Recovery of α-amylase extracted by reverse micelles. Proc. Biochem. 31:125–128.CrossRefGoogle Scholar
  18. Brul, S., and Coote, P. 1999. Preservative agents in foods, mode of action and microbial resistance mechanisms. Intl. J. Food Microbiol. 50:1–17.CrossRefGoogle Scholar
  19. Buchholz, K., Noll-Borchers, M., and Schwengers, D. 1998. Production of leucrose by dextransucrase. Starch 50:164–172.CrossRefGoogle Scholar
  20. Cachon, R., Molin, P., and Divies, C. 1995. Modeling of continuous pH-stat stirred tank reactor with Lactococcus lactis ssp. lactis bv. diacetylactis immobilized in calcium alginate gel beads. Biotechnol. Bioeng. 47:567–574.CrossRefGoogle Scholar
  21. Calik, G., Savasci, H., Calik, P., and Ozdamar, T. H. 1999. Growth and κ-carrageenan immobilization of Pseudomonas dacunhae cells for L-alanine production. Enzyme Microb. Technol. 24:67–74.CrossRefGoogle Scholar
  22. Caron, A. W., Archambault, J., and Massie, B. 1990. High-level recombinant protein productions in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 36: 1133–1140.CrossRefGoogle Scholar
  23. Carvalho, W., Silva, S. S., Santos, J. C., and Converti, A. 2003. Kylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb. Technol. 32:553–559.CrossRefGoogle Scholar
  24. Champagne, C. P., Gaudy, C., Poncelet, D., and Neufeld, R. J. 1992. Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiol. 58:1429–1434.Google Scholar
  25. Chao, Y. P, Lai, Z. J., Chen, P., and Chern, J. T. 1999. Enhanced conversion rate of L-phenylalanine by coupling reactions of transaminases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotech. Progress 15:453–458.CrossRefGoogle Scholar
  26. Chao, Y. P., Lo, T. E., and Luo, N. S. 2000. Selective production of L-aspartic acid and L-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzyme Microb. Technol. 27:19–25.CrossRefGoogle Scholar
  27. Chibata, I., Tosa, T., and Sato, T. 1974. Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl. Microbiol. 27:878–885.Google Scholar
  28. Chibata, I., Tosa, T., and Takamatsu, S. 1987. Continuous L-alanine production using two different immobilized microbial cell production. Methods Enzymol. 136:472–479.CrossRefGoogle Scholar
  29. Chih, Y. C., Kow, J. D., Dey, C. S., Chi Tsai, L., and Shin, Y. L. 1996. Production of fructooligosaccharides by immobilized mycelium of Aspergillus japonicus. J. Chem. Technol. Biotechnol. 66:135–138.CrossRefGoogle Scholar
  30. Colagrande, O., Silva, A., and Fumi, M. D. 1994. Recent applications of biotechnology in wine production. Rev. Biotechnol. Progr. 10:2–18.CrossRefGoogle Scholar
  31. Cruz, R., Cruz, V. D., Belini, M. Z., Belote, J. G., and Vieira, C. R. 1998. Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresource Technol. 65(1/2):139–143.CrossRefGoogle Scholar
  32. Cutter, C. N., and Siragusa, G. R. 1997. Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiol. 14:425–430.CrossRefGoogle Scholar
  33. Datta, R., and Tsai, S. P. 1995. Technology and economic potential of poly (lactic acid) and lactic acid derivatives. J. FEMS Microbiol. Rev. 16:221–231.CrossRefGoogle Scholar
  34. Deng, J. X., and Wang, Z. Y. 2007. Present situation and prospects of L-phenylalanine. Anhui Chem. Ind. 33:1–3.Google Scholar
  35. de Ory, I., Romero, L. E., and Cantero, D. 2004. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti. Process Biochem. 39:547–555.CrossRefGoogle Scholar
  36. Dibner, J. J., and Butin, P. 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poultry Res. 11:453–463.Google Scholar
  37. Dominguez, J. M. 1998. Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol. Lett. 20:53–56.CrossRefGoogle Scholar
  38. Dong, G. Q., Kaul, R., and Mattiasson, B. 1991. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl. Microbiol. Biotechnol. 36:309–314.Google Scholar
  39. Doores, S. 1990. pH control agents and acidulants. In Food Additives, ed. A. L. Bransen, P. M. Davidson, S. Salminen, pp. 477–511. New York and Basel: Marcel Dekker, Inc.Google Scholar
  40. Dovyap, Z., Bayraktar, E., and Mehmetoglu, U. 2006. Amino acid extraction and mass transfer rate in the reverse micelle system. Enzyme Microbial Technol. 38:557–562.CrossRefGoogle Scholar
  41. Drews, B., Specht, H., and Gubel, H. S. 1966. Unterschungen uber die fluchtigen bestandteile im bier. Monatsschr. Brauerei 19:145–156.Google Scholar
  42. Eskin, M. N. A. 1990. Biochemistry of Foods. San Diego: Academic.Google Scholar
  43. Eyal, A. M., and Bressler, E. 1993. Industrial separation of carboxylic and amino acids by liquid membranes: applicability, process considerations, and potential advantages. Biotechnol. Bioeng. 41:287–295.CrossRefGoogle Scholar
  44. Figueiredo, Z. M. B., and Carvalho, L. B., Jr. 1991. L-Malic acid production using immobilized Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 30:217–224.CrossRefGoogle Scholar
  45. Fukushima, S., Nagi, T., Fujita, K., Tanaka, A., and Fukui, S. 1978. Hydrophilic urethane prepolymers. Convenient materials for enzyme entrapment. Biotechnol. Bioeng. 20:1465.CrossRefGoogle Scholar
  46. Fukusima, T. 1981. Continuous alcohol fermentation of fruit juice using immobilized raw yeast bioreactor. J. Brew. Soc. Jpn 76:688.Google Scholar
  47. Furusaki, S., and Seki, M. 1992. Use and engineering aspects of immobilized cells in biotechnology. Adv. Biochem. Eng./Biotechnol. 46:161–185.CrossRefGoogle Scholar
  48. Fusee, M. C., Swann, W. E., and Calton, G. J. 1981. Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for L-aspartic acid production. Appl. Environ. Microbiol. 42:672–676.Google Scholar
  49. Gates, J. C. 1981. Basic Foods. New York: Holt, Rinehart and Winston.Google Scholar
  50. Gestrelius, S. 1982. Potential application of immobilized cells in the food industry. Malolactic fermentation of wine. Enzyme Eng. 6:245–250.Google Scholar
  51. Ghommidh, C., Cutayar, J. M., and Navarro, J. M. 1986. Continuous production of vinegar. I. Research strategy. Biotechnol. Lett. 8:13.CrossRefGoogle Scholar
  52. Ghommidh, C., Navarro, J. M., and Durand, G. 1982. A study of acetic acid production by immobilized Acetobacter cells: oxygen transfer. Biotechnol. Bioeng. 26:605.CrossRefGoogle Scholar
  53. Ghommidh, C., Navarro, J. M., and Messing, R. A. 1982. A study of acetic acid production by immobilized Acetobacter cells: product inhibition effects. Biotechnol. Bioeng. 26:1991.CrossRefGoogle Scholar
  54. Godtfredsen, S. E., Ottesen, M., and Svensson, B. 1981. Application of immobilized yeast and yeast coimmobilized with amyloglucosidase in brewing process. Proc. Eur. Brew. Conv. Cong. 19:505–511.Google Scholar
  55. Goksungur, Y., and Guvenc, U. 1997. Continuous production of lactic acid from beet molasses by L. delbrueckii IFO 3202. J. Chem. Eng. Biotechnol. 69:399–404.CrossRefGoogle Scholar
  56. Goksungur, Y., and Guvenc, U. 1999. Production of lactic acid from beet molasses by calcium alginate immobilized L. delbrueckii IFO 3202 batch and continuous. J. Chem. Eng. Biotechnol. 74:131–136.CrossRefGoogle Scholar
  57. Goosen, F. A. M. 1993. Insect cell culture engineering, an overview. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 1–16. New York and Basel: Marcel Dekker, Inc.Google Scholar
  58. Gough, S., Barron, N., Zulbov, A., Lozinsky, V. I., and McHale, A. P. 1998. Production of ethanol from molasses at 45°C using Kluyveromyces marxianus IM3 immobilised in calcium alginate gels and polyvinyl alcohol. J. Bioprocess. Eng. 19:87–90.Google Scholar
  59. Grace, T. D. C. 1962. Establishment of four strains of cells from insect tissue in vitro. Nature 195:788.CrossRefGoogle Scholar
  60. Gu, Z. 1997. Process development of propionic acid production by fermentation. Dissert. Abs. Intl. B 58(6):3177.Google Scholar
  61. Guardiola, J., Iborra, J. L., Rodenas, L., and Canovas, M. 1996. Biotransformmation from geraniol to nerol by immobilized grapevine cells (V. vinifera). Appl. Biochem. Biotechnol. 56:169–180.CrossRefGoogle Scholar
  62. Hamada, T., Ishiyama, T., and Motai, H. 1989. Continuous fermentation of soy sauce by immobilized cells of Zygosaccharomyces rouxii in airlift reactor. Appl. Microbiol. Biotechnol. 31:346–350.CrossRefGoogle Scholar
  63. Hamada, T., Sugishita, M., and Motai, H. 1990. Continuous production of 4-ethylguaiacol by immobilized cells of salt-tolerant Candida versatilis in an airlift reactor. J. Ferment. Bioeng. 69:166.CrossRefGoogle Scholar
  64. Hamamci, H., and Ryu, D. D. Y. 1994. Production of L(+)-lactic acid using immobilized Rhizopus oryzae. Reactor performance based on kinetic model and simulation. Appl. Biochem. Biotechnol. 44:125–133.CrossRefGoogle Scholar
  65. Hamdy, O. S., Honecker, S., and Rehm, H. J. 1992. A comparative study on the formation of citric acid and polyols and on morphological changes of three strains of free and immobilized Aspergillus niger. Appl. Microbiol. Biotechnol. 36:518–524.Google Scholar
  66. Hara, S., Noziro, K., and Akiyama, Y. 1981. Japanese Patent #56-20830.Google Scholar
  67. Hink, W. F. 1982. Production of Autographa californica nuclear polyhedrosis virus in cells from large-scale suspension culture. In: Microbial and Viral Pesticides, ed. E. Kurstak, pp. 493–506. New York and Basel: Marcel Dekker, Inc.Google Scholar
  68. Hink, W. F., and Strauss, E. M. 1980. Semi-continuous culture of the TN-368 cell line in fermenters with virus production in harvested cells. In: Invertebrate System In Vitro, ed. E. Kurstak, K. Maramorosch, A. Dubendorfer, pp. 27–33. North Holland, Amsterdam, New York: Elsevier.Google Scholar
  69. Hirotsune, M., Nakada, F., Hamachi, M., and Honma, T. 1987. Continuous fermentation of saccharified rice solution using immobilized yeast. J. Brew. Soc. Jpn 82:582.CrossRefGoogle Scholar
  70. Holden, M. A., and Yeoman, M. M. 1987. Optimization of product yield in immobilized plant cell cultures. In: Bioreactors and Biotransformations, ed. G. W. Moody and P. B. Baker, pp. 1–11. London: Elsevier.Google Scholar
  71. Honda, Y., Kako, M., Abiko, K., and Sogo, Y. 1993. Hydrolysis of lactose in milk. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 209–234. New York and Basel: Marcel Dekker, Inc.Google Scholar
  72. Hongyu, S., Yonghong, H., Shubao, S., and Ouyang, P. K. 2003. Development of research on biocatalyst immobilization. Chem. Ind. Eng. Progress 2:18–21.Google Scholar
  73. Hoshino, K., Taniguchi, M., Marumoto, H., Shimizu, K., and Fujii, M. 1991. Continuous lactic acid production from raw starch in a fermentation system using a reversibility soluble-autoprecipitation amylase and immobilized cells of Lactobacillus casei. Agric. Biol. Chem. 55:479–485.CrossRefGoogle Scholar
  74. Hu, Y., Ouyang, P., and Yang, W. 1995. Immobilization of fumarase with κ-carrageenan mixed gel for production L-malic acid. Chin. J. Biotechnol. 11:396–398.Google Scholar
  75. Iborra, J. L., Manjon, A., Canovas, M., Lozano, P., and Martinez, C. 1994. Continuous limonin degradation by immobilized Rhodococcus fascians cells in κ-carrageenan. Appl. Microbiol. Biotechnol. 41:487–493.Google Scholar
  76. Idris, A., and Wahidin, S. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41:1117–1123.CrossRefGoogle Scholar
  77. Idris, A., Wahidin, S., and Mat, H. B. 2003. Lactic acid fermentation from liquid pineapple waste using free and immobilized Lactobacillus delbrueckii ATCC 9646. Water Environ. Manage. Ser. 213–219.Google Scholar
  78. Iida, T. 1993. Fuel ethanol production by immobilized yeasts and yeast immobilization. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 163–182. New York and Basel: Marcel Dekker, Inc.Google Scholar
  79. Ikeda, K. 1909. On a new seasoning. J. Chem. Soc. Tokyo 30:820–836.Google Scholar
  80. Inoue, T. 1981. The relationship between the performance of yeast and acetohydroxy acid formation during wort fermentation. MBAA Tech. Quart. 17:62–65.Google Scholar
  81. Jay, J. M., Loessner, M. J., and Golden, D. A. 2005. Nondainy fermented foods and products. In: Modern Food Microbiology, 7th ed., pp. 175–188. New York: Springer.Google Scholar
  82. Jiang, B., Wang, Z., and Ding, X. L. 1996. Production of high purity fructooligosaccharides with co-immobilized Aspergillus niger and enzyme. Food Ferment. Indus. 1:1–7 (in Chinese).Google Scholar
  83. Kaufman, E. N., Cooper, S. P., Budner, M. K., and Richardson, G. R. 1996. Continuous and simultaneous fermentation and recovery of lactic acid in a biparticle fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 57/58:503–515.CrossRefGoogle Scholar
  84. Kautola, H., Rymowicz, W., Linko, Y. Y., and Linko, P. 1991. Production of citric acid with immobilized Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 35(4):447–449.CrossRefGoogle Scholar
  85. Kennedy, J. F., Humphreys, J. D., and Barker, S.A. 1980. Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar)-hydrous titanium (IV) oxide-immobilized Acetobacter species. Enzyme Microb. Technol. 2:209.CrossRefGoogle Scholar
  86. Khare, S. K., Jha, K., and Gandhi, A. P. 1994. Use of agarose-entrapped Aspergillus niger cells for the production of citric acid from soy whey. Appl. Microbiol. Biotechnol. 41:571–573.CrossRefGoogle Scholar
  87. Kim, D. M., and Kim, H. S. 1992. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase. Biotechnol. Bioeng. 39:336–342.CrossRefGoogle Scholar
  88. King, G. A., Daugulis, A. J., Faulkner, P., and Goosen, M. F. A. 1987. Alginate-polylysine microcapsules of controlled membrane molecular weight cut off for mammalian cell culture engineering. Biotech. Progress 3:231–240.CrossRefGoogle Scholar
  89. Kirk, R. E., and Othmer, D. F. 1991. In: Encyclopedia of Chemical Technology, vol. 2, 4th ed., pp. 504–570. New York: Wiley.Google Scholar
  90. Kleemann, A., Leuchtenberger, W., Hoppe, B., and Tanner, H. 1985. Amino acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, vol. A2, ed. W. Gerhartz, pp. 57–59. Weinheim, Germany: VCH Publishers.Google Scholar
  91. Klinkerberg, G., Lystad, K. Q., Levine, D. W., and Dyrset, N. 2001. Cell release from alginate immobilized Lactococcus lactic ssp. lactis in chitosan and alginate coated beads. J. Diary Sci. 84:1118–1127.CrossRefGoogle Scholar
  92. Knuth, M. E., and Sahai, O. P. (for Escagenetics Corporation) 1989. Production of flavor components by plant callus culture. PCT, International Application #890,209, Patent #8,900,820.Google Scholar
  93. Kondo, M., Suzuki, Y., and Kato, H. 1988. Vinegar production by Acetobacter cells immobilized on ceramic honeycomb-monolith. Hakko Kogaku Kaishi (Bull. Soc. Ferment. Technol. Jpn) 66:393.Google Scholar
  94. Kotzamnidis, C., Roukas, T., and Skaracis, G. 2002. Optimization of lactic acid production from beet molasses by Lactobacillus delbruekii NCIMB 8130. World J. Microbiol. Biotechnol. 18:441–448.CrossRefGoogle Scholar
  95. Kourkoutas, Y., Kanellaki, M., Koutinas, A. A., and Tzia, C. 2005a. Effect of fermentation conditions and immobilization supports on the wine making. J. Food Eng. 69: 115–123.CrossRefGoogle Scholar
  96. Kourkoutas, Y., Xolias, V., Kallis, M., Bezirtzoglou, E., and Kanellaki, Y. 2005b. Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem. 40:411–416.CrossRefGoogle Scholar
  97. Krei G. A., and Hustedt, H. 1992. Extraction of enzymes by reverse micelles. Chem. Eng. Sci. 47:99–111.CrossRefGoogle Scholar
  98. Kumon, S., and Kawakita, T. 1991. Amino acids. In: Biotechnology of Food Ingredients, ed. I. Goldberg, pp. 125–151. New York: Reinhold.Google Scholar
  99. Kunas, K. T., and Papoutsakis, E. T. 1990. Damage mechanism of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36:473–476.CrossRefGoogle Scholar
  100. Kuriki, T., Yanase, M., Takata, H., and Okada, S. 1997. Production of isomalto/branched oligosaccharide syrup by using immobilized neopullulanase and preliminary evaluation of the syrup as a food additive. J. Appl. Glycosci. 44:15–22.Google Scholar
  101. Kuzio, J., and Faulkner, P. 1993. An overview of the molecular biology and applications of baculoviruses. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 17–50. New York and Basel: Marcel Dekker, Inc.Google Scholar
  102. Lamboley, L., Lacroix, C., Champagne, C. P., and Vuillemard, J. C. 1997. Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnol. Bioeng. 56:502–516.CrossRefGoogle Scholar
  103. Larroche, C., Creuly, C., and Gross, J. B. 1995. Fed-batch biotransformation of β-ionone by Aspergillus niger. Appl. Microbiol. Biotechnol. 43:222–227.CrossRefGoogle Scholar
  104. Larroche, C., and Gross, J. B. 1989. Batch and continuous 2-heptanone production by Ca-alginate/eudragit RL entrapped spore of Penicillium roqueforti. Biotechnol. Bioeng. 34:30–38.CrossRefGoogle Scholar
  105. Larroche, C., Tallu, B., and Gross, J. B. 1988. Aroma production by spores of Penicillium roqueforti on synthetic medium. J. Ind. Microbiol. 3:1–8.CrossRefGoogle Scholar
  106. Lathika, K. M., Sharma, S., Inamdar, K. V., and Raghavan, K. G. 1995. Oxalate depletion from leafy vegetables using alginate entrapped banana oxalate oxidase. Biotechnol. Lett. 17:407–410.CrossRefGoogle Scholar
  107. Leach, G., Oliveira, G., and Morais, R. 1998. Production of carotenoid rich product by alginate entrapment and fluid bed drying of Dunaliella salina. J. Sci. Food Agric. 76:298–302.CrossRefGoogle Scholar
  108. Li, R. H., Altreuter, D. H., and Gentile, F. T. 1996. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 50:365–373.CrossRefGoogle Scholar
  109. Lindsey, K., and Yeoman, M. M. 1986. The viability and synthetic potential of immobilized chilli pepper cells. In: Process Engineering Aspects of Immobilized Cell Systems, ed. C. Webb, G. M. Black, B. Atkinson, pp. 304–308. Warwicksshire, England: Institute of Chemical Engineers.Google Scholar
  110. Lindsey, K., Yeoman, M. M., Black, G. M., and Mavituna, F. 1983. A novel method for the immobilization and culture of plant cells. FEBS Lett. 155:143–149.CrossRefGoogle Scholar
  111. Maicas, S., Pardo, I., and Ferrer, S., 2001. The potential of positively-charged cellulose sponge for malolactic fermentation of wine, using Oenococcus oeni. Enzyme Microb. Technol. 28: 415–419.CrossRefGoogle Scholar
  112. Maiorella, B., Inlow, D., Shanger, A., and Harano, D. 1988. Large-scale insect cell culture for recombinant protein production. Biotechnology 6:1406–1410.CrossRefGoogle Scholar
  113. Makishima, R., and Aoki, H. 1984. Bio-ceramics. Gihodoushuppan 79–94.Google Scholar
  114. Masschelein, C. A., and Francotte, C. 1983. Possibilities et limites d’application des reacteurs a cellules de levure immobilisees en brasserie. Cerevisiae 3:135–142.Google Scholar
  115. Matsumoto, K. 1993. Removal of urea from alcoholic beverages by immobilized acid urease. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 255–273. New York and Basel: Marcel Dekker, Inc.Google Scholar
  116. Mavituna, F., Wilkinson, A. K., Williams, P. D., and Park, J. M. 1987. Production of secondary metabolites by immobilized plant cells in novel bioreactors. In: Bioreactors and Biotransformations, ed. G. W. Moody and P. B. Baker, pp. 26–37. London: Elsevier.Google Scholar
  117. Maxwell, P. C., Shapiro, L. M., and Tareza, J. E. 1986. Process for the production of muconic acid. U.S. Patent #4,588,688.Google Scholar
  118. Meiyan, X., Xu, E., and Zhiwen, C. 2003. Development of research on technology of immobilized cells. Food Sci. 24:158–161.Google Scholar
  119. Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., and Imada, Y. 1988. Microbial production of cis,cis-muconic acid from benzoic acid. Appl. Microbiol. Biotechnol. 28:20.CrossRefGoogle Scholar
  120. Mizunuma, T. 1986. Soy saucelike seasoning. Bimonthly J. Microorg. 2:35.Google Scholar
  121. Moonmangmee, S., Toyama, H., Adachi, Teerakool, G., Lotong, N., and Matsushita, K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci. Biotechnol. Biochem. 66:777–783.CrossRefGoogle Scholar
  122. Mori, A. 1993. Vinegar production in a fluidized-bed reactor with immobilized bacteria. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 291–313. New York and Basel: Marcel Dekker, Inc.Google Scholar
  123. Mori, A., Matsumoto, N., and Imai, C. 1989. Growth behavior of immobilized acetic bacteria. Biotechnol. Lett. 11:183–188.CrossRefGoogle Scholar
  124. Motai, H., Fukushima, Y., Osaki, K., Okamura, K., and Imai, K. (for Kikkoman Corporation) 1989. Microorganisms or enzyme immobilization with a mixture of alginate and silica sol. U.S. Patent #4,797,358.Google Scholar
  125. Motai, H., Hamada, T., and Fukushima, Y. 1993. Application of a bioreactor system to soy sauce production. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 315–335. New York and Basel: Marcel Dekker, Inc.Google Scholar
  126. Murhammer, D. W., and Goochee, C. F. 1988. Scale-up of insect cell cultures: protective effects of Pluronic F-68. Biotechnology 6:1411–1418.CrossRefGoogle Scholar
  127. Murhammer, D.W., and Goochee, C. F. 1990. Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol. Progress 6:391–397.CrossRefGoogle Scholar
  128. Nakanishi, K., Murayama, H., Nagara, A., and Mitsui, S. 1993. Beer brewing using an immobilized yeast bioreactor system. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 275–289. New York and Basel: Marcel Dekker, Inc.Google Scholar
  129. Nakanishi, K., Murayama, H., Sato, K., Nagara, A., Yasui, T., and Mitsui, S. 1989. Continuous beer brewing with yeast immobilized on granular ceramic. Hakko Kocagu Kaishi 67:509–514.Google Scholar
  130. Nakanishi, K., Onaka, T., Inoue, T., and Kubo, S. 1985. An immobilized yeast reactor system for rapid production of beer. Proc. 20th Eur. Brew. Conv. Cong. Helsinki, 331–338.Google Scholar
  131. Nanba, A., Kimura, K., and Nagi, S. 1985. Vinegar production by Acetobacter rancens cells fixed on a hollow fiber module. J. Ferment. Technol. 63:175.Google Scholar
  132. Naouri, P., Bernet, N., Chagnaud, P., Arnaud, A., Galzy, P., and Rios, G. 1991. Bioconversion of L-malic into L-lactic acid using a high compacting multiphasic reactor (HCMR). J. Chem. Technol. Biotechnol. 51:81–95.CrossRefGoogle Scholar
  133. Narziss, L., and Hellich, P. 1971. Ein beitung zur wesentlichen beschleunigung der garung und reifung des bieres. Brauwelt 111:1491–1500.Google Scholar
  134. Narziss, L., and Hellich, P. 1972. Rapid fermentation and maturing of beer by means of the bio-reactor. Brewers Digest 47:106–118.Google Scholar
  135. Navarro, J. M., Durand, B., Moil, M., and Corrieu, G. 1976. Mise en point d’un procede continu de preparation de boissons fermentees. Ind. Alimentaires Agr. 93(6):695–703.Google Scholar
  136. Nelson, E. K. 1919. The constitution of capsaicin, the pungent principle of capsicum. J. Am. Chem. Soc. 41:1115–1121.CrossRefGoogle Scholar
  137. Neufeld, R. J., Peleg, Y., Rokem, J. S., Pines, O., and Goldberg, I. 1991. L-malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb. Technol. 13:991–996.CrossRefGoogle Scholar
  138. Norton, S., Lacroix, C., and Vuillemard, J. C. 1994. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production. Enzyme Microb. Technol. 16:457–466.CrossRefGoogle Scholar
  139. Numata, T., Matsumoto, K., Nakamura, M., Fukuyasu, S., Watake, H., Yamaguchi, S., Kawachi, K., Kinoshita, S., and Nakamura, T. 1990. A production method of a new type of miso with a membrane bioreactor. Hakko Kogaku Kaishi 68:205.Google Scholar
  140. Nunokawa, Y., and Hirotsune, M. 1993. Production of soft sake by an immobilized yeast reactor system. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 235–253. New York and Basel: Marcel Dekker, Inc.Google Scholar
  141. Nussinovitch, A. 2003. Water-Soluble Polymer Applications in Foods. Oxford, UK: Blackwell Science Ltd.CrossRefGoogle Scholar
  142. Okuhara, A. 1985. Vinegar production with Acetobacter grown on a fibrous support. J. Ferment. Technol. 63:57.Google Scholar
  143. Oliveira, E. A., Costa, A. A. R., Figueiredo, Z. M. B., and Carvalho, L. B., Jr. 1994. L-malic acid production by entrapped Saccharomyces cerevisiae into polyacrylamide gel beads. Appl. Biochem. Biotechnol. 47:65–72.CrossRefGoogle Scholar
  144. Onaka, T., Nakanishi, K., Inoue, T., and Kubo, S. 1985. Beer brewing with immobilized yeast. Bio/Technology 3:467.CrossRefGoogle Scholar
  145. Osuga, J., Mori, A., and Kato, J. 1984. Acetic acid production by immobilized Acetobacter acetii cells entrapped in a κ-carrageenan gel. J. Ferment. Technol. 62:139.Google Scholar
  146. Osuga, J., Umemoto, K., and Mori, A. 1985. Process for production of vinegar. Japanese Patent #60-168377/1985.Google Scholar
  147. Ough, C. S., and Trioli, G. 1988. Urea removal from wine by an acid urease. Am. J. Enol. Vitic. 39(4):303.Google Scholar
  148. Panesar, R., Panesar, P. S., Singh, R. S., and Bera, M. B. 2007. Applicability of alginate entrapped yeast cells for the production of lactose-yeast cells for the production of lactose-hydrolyzed milk. J. Food Proc. Eng. 30:472–484.CrossRefGoogle Scholar
  149. Parajo, J. C., Dominguez, H., and Dominguez, J. M. 1996. Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol. Lett. 18:593–598.CrossRefGoogle Scholar
  150. Pardonova, B., Polednikova, M., Sedova, H., Kahler, M., and Ludvik, J. 1982. Biokatalysator fur die bierherestellung. Brauwissenscaft 35:254–258.Google Scholar
  151. Peijing, F., and Zhangcai, Y. 1993. Studies on the conversion of phenylpyruvic acid to L-phenylalanine by Alcaligenes sp. Acta Microb. Sinica 33:418–426.Google Scholar
  152. Polednikova, M., Sedova, H., and Kahler, M. 1981. Immobilizovane pivovarske kvasinky. Kvas. Prum. 27:193–198.Google Scholar
  153. Posillico, E. G. 1986. Microencapsulation technology for large-scale antibody production. Bio/Technology 4:114–117.CrossRefGoogle Scholar
  154. Prasad, B., and Mishra I. M. 1995. On the kinetics and effectiveness of immobilized whole cell batch cultures. J. Bioresources Technol. 53:269–275.Google Scholar
  155. Prehaud, C., Takehara, K., Flamand, A., and Bishop, D. H. L. 1989. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology 173: 390–399.CrossRefGoogle Scholar
  156. Prevost, H., and Divies, C. 1992. Cream fermentation by mixed culture of lactococci entrapped in two-layer calcium alginate beads. Biotechnol. Lett. 14:583–588.CrossRefGoogle Scholar
  157. Puri, M., Marwaha, S.S., and Kothari, R. M. 1996 Comparative kinetic characterization of soluble and alginate entrapped naringinase. Enzyme Microbial. Technol. 18:281–285.CrossRefGoogle Scholar
  158. Rajagopalan, J., Pillutla, S. T., and Sonal, V. 1992. Optimization of critical parameters for immobilization of yeast cells to alginate gel matrix. J. Ferment. Bioeng. 73:319–322.CrossRefGoogle Scholar
  159. Ramagnoli, L.G., and Knorr, D. 1988. Effects of ferulic acid treatment on growth and flavor development of cultured Vanilla planifoli cells. Food Biotechnol. 2:93–104.CrossRefGoogle Scholar
  160. Rehr, B., Wilhelm, C., and Sahm, H. 1991. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 35:144–148.CrossRefGoogle Scholar
  161. Rickert, D. A., Glatz, C. E., and Glatz, B. A. 1998. Improved organic acid production by calcium alginate-immobilized propionibacteria. Enzyme Microb. Technol. 22:409–414.CrossRefGoogle Scholar
  162. Roukas, T., and Kotzekidou, P. 1998. Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme Microb. Technol. 22:199–204.CrossRefGoogle Scholar
  163. Roukas, T., and Kotzekidou, P. 1996. Continuous production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells in a packed bed reactor. Food Biotechnol. 10:231–242.CrossRefGoogle Scholar
  164. Rymowicz, W., Kautola, H., Wojtatowicz, M., Linko, Y. Y., and Linko, P. 1993. Studies on citric acid production with immobilized Yarrowia lipolytica in repeated batch and continuous air-lift bioreactors. Appl. Microbiol. Biotechnol. 39:1–4.Google Scholar
  165. Saeki, A. 1990. Vinegar production using immobilized Acetobacter aceti cells entrapped in calcium alginate gel beads. Nippon Shokuhin Kogyo Gakkaishi (J. Jpn Soc. Food Sci. Technol.) 37:191.CrossRefGoogle Scholar
  166. Salminen, S., and Hallikainen, A. 1990. Sweeteners. In: Food Additives, ed. A. L. Bransen, P. M. Davidson, S. Salminen, pp. 297–327. New York and Basel: Marcel Dekker, Inc.Google Scholar
  167. Sato, T., Nishida, Y., Tosa, T., and Chibata, I. 1979. Immobilization of Escherichia coli cells containing aspartase activity with κ-carrageenan enzymic properties and application for L-aspartic acid production. Biochim. Biophys. Acta 570:179–186.CrossRefGoogle Scholar
  168. Sato, Y., Sato, H., Sato, N., and Muraki, K. 1983. Immobilization of microorganisms and enzymes and its application. Rep. Iwate Brewing Food Manufact. Res. Inst. 17:204–209.Google Scholar
  169. Sato, T., and Tosa, T. 1993. Production of L-aspartic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 15–24. New York and Basel: Marcel Dekker, Inc.Google Scholar
  170. Seitz, W. E. 1991. Flavor building blocks. In: Biotechnology and Food Ingredients, ed. I. Goldberg, R. Williams, pp. 375–391. New York: Van Nostrand Reinhold.Google Scholar
  171. Seki, M., Yoshikawa, N., Saton, M., Mizuno, S., and Ohkishi, H. 1987. In: Proc. IV Eur. Congr. Biotechnol., vol. 1, ed. O. M. Neijssel, p. 224. Amsterdam: Elsevier.Google Scholar
  172. Shuler, M. L., Cho, T., Wickham, T., Ogonah, O., Kool, M., Hammer, D. A., Granados, R. R., and Wood, M. A. 1990. Bioreactor development for production of viral pesticides or heterologous proteins in insect cell cultures. Ann. NY Acad. Sci. 589:399–421.CrossRefGoogle Scholar
  173. Sitton, O. C., Magruder, G. C., Book, N. L., and Gaddy, J. L. 1980. Comparison of immobilized cell reactor and CSTR for ethanol production. Biotechnol. Bioeng. Symp. 10:213.Google Scholar
  174. Smith, N. A., Goosen, M. F. A., King, G. A., Faulkner, P., and Daugulis, A. J. 1989. Toxicity analysis of encapsulation solutions and polymers in the cultivation of insect cell. Biotechnol. Lett. 3:61–66.Google Scholar
  175. Summers, M. D., and Smith, G. E. 1985. Gentic engineering of the genome Autographa californica nuclear polyhedrosis virus. In: Genetically Altered Viruses in the Environment, ed. B. Fields, M. Martin, D. Kamely, Banbury Rep. p. 22. Cold Spring Harbor, New York.Google Scholar
  176. Sun, Y., and Furusaki, S. 1990. Continuous production of acetic acid using immobilized Acetobacter aceti in a three-phase fluidized bed bioreactor. J. Ferment. Bioeng. 69:102.CrossRefGoogle Scholar
  177. Sutherland, J. P., Varnam, A. H., and Evans, M. G. 1986. A Color Atlas of Food Quality Control. Weert, The Netherlands: Wolfe Science.Google Scholar
  178. Takac, S., Akay, B., and Ozdamar T. H. 1995. Bioconversion of trans-cinnamic acid to L-phenylalanine by L-phenylalanine ammonia-lyase of Rhodotorula glutinis: parameters and kinetics. Enzyme Microb. Technol. 17:445–452.CrossRefGoogle Scholar
  179. Takada, M., and Hiramitsu, T. 1991. Continuous production of vinegar using bioreactor with supports of porous ceramics. Nippon Shokuhin Kogyo Gakkaishi (J. Jpn Soc. Food Sci. Technol.) 38:967.CrossRefGoogle Scholar
  180. Takamatsu, S., and Tosa, T. 1993. Production of L-alanine and D-aspartic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 25–35. New York and Basel: Marcel Dekker, Inc.Google Scholar
  181. Takamatsu, S., Tosa, T., and Chibata, I. 1986. Industrial production of L-alanine from ammonium fumarate using immobilized microbial cells of two kinds. J. Chem. Eng. Jpn 19:31–36.CrossRefGoogle Scholar
  182. Takata, I., Kayashima, K., Tosa, T., and Chibata, I. 1982. Immobilization of Brevibacterium flavum using κ-carrageenan modified with amines and stability of fumarase activity of the immobilized cells. J. Appl. Biochem. 4:371.Google Scholar
  183. Takata, I., and Tosa, T. 1993. Production of L-malic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 53–65. New York and Basel: Marcel Dekker, Inc.Google Scholar
  184. Takata, I., Tosa, T., and Chibata, I. 1984. Stability of fumarase activity of Brevibacterium flavum immobilized with carageenan and Chinese gallotannin. Appl. Microbiol. Biotechnol. 19:85.CrossRefGoogle Scholar
  185. Takayanagi, H. 2001. Application of gels for separation matrices. In: Gels Handbook, vol. 3, Application, ed. Y. Osada, K. Kajiwara, pp. 352–361. San Diego and San Francisco: Academic.CrossRefGoogle Scholar
  186. Toda, K., and Sato, K. 1985. Simulation study on oxygen uptake rate of immobilized growing microorganisms. J. Ferment. Technol. 63:251–258.Google Scholar
  187. Tong, W. Y., Fu, X. Y., Lee, S. M., Yu, J., Lui, J. W., Wei, D. Z., and Koo, Y. M. 2004. Purification of L(+) lactic acid from fermentation broth with paper sludge as cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochem. Eng. J. 18:89–96.CrossRefGoogle Scholar
  188. Tosa, T., Sato, T., Mori, T., and Chibata, I. 1974. Basic studies for continuous production of L-aspartic acid by immobilized Escherichia coli cells. Appl. Microbiol. 27:886–889.Google Scholar
  189. Totsuka, A., and Hara, A. 1981. Decomposition of malic acid in red wine by immobilized microbial cells. Hakko Kogaku Kaishi 59:231–237.Google Scholar
  190. Tramper, J., Van Den End, E. J., De Gooijer, C. D., Kompier, K., Van Lier, F. L. J., Usmany, M., and Vlak, J. M. 1990. Production of baculovirus in a continuous insect cell culture. Ann. NY Acad. Sci. 589:423–430.CrossRefGoogle Scholar
  191. Ueno, T. 2003. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase as substrate and enzyme. Biotechnol. Lett. 5:573–577.CrossRefGoogle Scholar
  192. Van Lier, F. L. J., Van Den End, E. J., De Gooijer, C. D., Vlak, J. M., and Tramper, J. 1990. Continuous production of baculovirus in a cascade of insect-cell reactors. Appl. Microbiol. Biotechnol. 33:43–47.CrossRefGoogle Scholar
  193. Vauquelin, L. N., and Robiquet, P. J. 1806. The discovery of a new plant principle in Asparagus sativus. Ann. Chim. 57:88–93.Google Scholar
  194. Wada, M., Kato, J., and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cell. Eur. J. Appl. Microbiol. Biotechnol. 10:275.CrossRefGoogle Scholar
  195. Wan, J., Gordon, J. B., Muirhead, K., Hickey, M. W., and Coventry, M. J. 1997. Incorporation of nisin in micro-particles of calcium alginate. Lett. Appl. Microbiol. 24:153–158.CrossRefGoogle Scholar
  196. White, F. H., and Portno, A. D. 1978. Continuous fermentation by immobilized brewers yeast. J. Inst. Brew. 84:228–230.Google Scholar
  197. Wickham, T. J., Davis, T., Granados, R. R., Hammer, D. A., Shuler, M. L., and Wood, H. A. 1991. Baculovirus defective interfering particles are responsible for variations in recombinant protein production as a function of multiplicity of infection. Biotechnol. Lett. 13:483–488.CrossRefGoogle Scholar
  198. Williams, D., and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23:1813.CrossRefGoogle Scholar
  199. Wollaston, W. H. 1810. On cystic oxide, a new species of urinary calculus. Phil. Trans. R. Soc. Lond. 100:223–230.Google Scholar
  200. Yamamoto, A. 1978. Amino acid (survey). In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 2, 3rd ed., ed. M. Grayson, pp. 376–410. New York: John Wiley & Sons.Google Scholar
  201. Yamamoto, K., Tosa, T., and Chibata, I. 1980. Continuous production of L-alanine using Pseudomonas dacunhae immobilized with carrageenan. Biotechnol. Bioeng. 22: 2045–2054.CrossRefGoogle Scholar
  202. Yan, J., Bajpai, R., Iannoti, E., Popovic, M., and Mueller, R. 2001. Lactic acid fermentation from enzyme-thinned starch with immobilized Lactobacillus amylovorus. J. Chem. Biochem. Eng. 15:59–63.Google Scholar
  203. Yasuyuki, M., Yoshinori, K., Mitsugi, K., Yoshiki, Y., Toshio, T., Fumio, H., and Hiroshi, N. (Shokuhin Sangyo Bioreactor System Gijutsu Kenkyu Kumiai) 1989. Manufacture of seasoning materials using immobilized glutaminase. Japan Kokai Tokkyo Koho JP, Japanese Patent #01 10,957.Google Scholar
  204. Yeoman, M. M., Miedzybrodzka, M. B., Lindsey, K., and McLauchlan, W. R. 1980. The synthetic potential of cultured plant cells. In: Plant Cell Cultures: Results and Perspectives, ed. F. Sala, B. Parisi, R. Cella, O. Ciferri, pp. 327–343.Amsterdam/North Holland: Elsevier.Google Scholar
  205. Yonghong, H., Tianyu, T., Wenge Y., and Hua Z. 2009. Bioconversion of phenylpyruvic acid to l-phenylalanine by mixed-gel immobilization of Escherichia coli EP8-10. Process Biochem. 44:142–145.CrossRefGoogle Scholar
  206. Yoo, I. K., Seong, G. H., Chang, H. N., and Park, J. K. 1996. Encapsulation of Lactobacillus casei cells in liquid core alginate capsules for lactic acid production. Enzyme Microb. Technol. 19:428–433.CrossRefGoogle Scholar
  207. Yoshida, T. 1978. L-Monosodium glutamate (MSG). In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 2, 3rd ed., ed. M. Grayson, pp. 410–421. New York: John Wiley & Sons.Google Scholar
  208. Yoshikawa, N., Ohta, K., Mizuno, S., and Ohkishi, H. 1993. Production of cis,cis-muconic acid from benzoic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 131–147. New York and Basel: Marcel Dekker, Inc.Google Scholar
  209. Zacco, E., Adrian , J., Galve , R., Marco, M. P., Alegret , S., and Pividori, M. I. 2007. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens. Bioelect. 22:2184–2191.CrossRefGoogle Scholar
  210. Zayed, G., and Winter, J. 1998. Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification. Appl. Microbiol. Biotechnol. 49:469–474.CrossRefGoogle Scholar
  211. Zayed, G., and Zahran, A. S. 1991. Lactic acid production from salt whey using free and agar immobilized cells. Lett. Appl. Microbiol. 12:241–243.CrossRefGoogle Scholar
  212. Zhong, G. U., Glatz, B. A., and Glatz, C. E. 1998. Effects of propionic acid on propionibacteria fermentation. Enzyme Microb. Technol. 22:13–18.CrossRefGoogle Scholar
  213. Zhu, M. Y., Ai, Z. L., Zhao, Q. Y., and Dai, Q. Y. 2004. Immobilization of α-amylase in calcium alginate-gelatin hydrogels. Food Sci. 25:64–68.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations