Bead Formation, Strengthening, and Modification



This chapter begins with a brief overview of the typical polymeric materials used for bead creation and their limitations. A full description is then provided of procedures to construct different bead forms, e.g., from cylindrical to almost perfectly spherical, by changing both the molds and the media into which the molten or dissolved hydrocolloid preparation is dropped or transferred. Also, some information on dropping methods, changing drop size and distribution, and liquid sprays is provided, affording a measure of control over bead size and distribution. The various water-soluble polymers that can be used for bead formation are discussed at length. The properties of gel beads prepared from agar/agarose ?-carrageenan, alginate, celluloses, chitosan, and to a lesser extent polyacrylamide and other synthetic polymers, among many others, are described. The use of crosslinking agents for both creation and strengthening of several bead types is thoroughly covered. Special methods to modify the porosity of the formed beads are also described, as are methods of slow dissolution of crystals by acid to facilitate better growth of embedded cells via pH regulation. A special section is devoted to beads prepared from proteins, ways to increase their stability (with, for example, glutaraldehyde), and their influence on the cells embedded within them. Since a combination of alternative methods may well provide a good means of overcoming the evident shortcomings of current bead-formation techniques, at the end of this chapter, a few approaches are presented, such as adding epoxy- resin reagent and curing agent to alginate for matrix stabilization, and other less known approaches for bead stabilization, as well as less traditional ways of producing and modifying beads.


Free Cell Alginate Bead Calcium Alginate Calcium Chloride Solution Methyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfani, F., Cantarella, L., Gallifuoco, A., Pezzullo, L., Scardi, V., and Cantarella, M. 1987. Characterization of the β-glucosidase activity associated with immobilized cellulase of A. niger. Ann. NY Acad. Sci. 501:503–507.CrossRefGoogle Scholar
  2. Altankov, G., Brodvarova, I., and Rashkov, I. 1991. Synthesis of protein-coated gelatin microspheres and their use as microcarriers for cell culture 1. Derivatisation with native collagen. J. Biomat. Sci. Polym. Ed. 2:81–89.CrossRefGoogle Scholar
  3. Aqualon Co. 1989. Culminal MC, MHEC, MHPC, Physical and Chemical Properties, Wilmington, DE; Benecel High Purity MC, MHEC, MHPC, Physical and Chemical Properties, Wilmington, DE.Google Scholar
  4. Araki, C. 1937. Agar-agar. III. Acetylation of the agar-like substance of Gelidium amansii L. J. Chem. Soc. Jpn. 58:1338–1350.Google Scholar
  5. Arigo, O., Takagi, H., Nishizawa, H., and Sano, Y. 1987. Immobilization of microorganisms with PVA hardened by interative freezing and thawing. J. Ferment. Technol. 65:651–658.CrossRefGoogle Scholar
  6. Armisen, R., and Kain, J. M. 1995. World-wide use and importance of Gracilaria. J. Appl. Phycol. 7:231–243.CrossRefGoogle Scholar
  7. Banerjee, M., Chakrabarty, A., and Majumdar, S. K. 1982. Immobilization of yeast cells containing β-galactosidase. Biotechnol. Bioeng. 24:1839–1850.CrossRefGoogle Scholar
  8. Bang, W. G., Berhrendt, U., Lang, S., and Wagner, F. 1983. Continuous production of L-tryptophan from indole and L-serine by immobilized Eschericihia coli cells. Biotechnol. Bioeng. 25: 1013–1025.CrossRefGoogle Scholar
  9. Berkland, C., Kim, K., and Pack, D. 2001. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control Release 73:59–74.CrossRefGoogle Scholar
  10. Birnbaum, S., Pendleton, R., Larsson, P., and Mosbach, K. 1981. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol. Lett. 3:393–400.CrossRefGoogle Scholar
  11. Brink, L. E. S., and Tramper, J., 1986. Modelling the effects of mass transfer on kinetics of propene epoxidation of immobilized Mycobacterium cells: 2. Product inhibition. Enzyme Microb. Technol. 8:334–340.CrossRefGoogle Scholar
  12. Brodelius, P., and Nilsson, K. 1980. Entrapment of plant cells in different matrices. FEBS Lett. 122:312–316.CrossRefGoogle Scholar
  13. Bucke, C. 1983. Immobilized cells. Philos. Trans. R. Soc. Lond., Ser. B, 300:369–389.CrossRefGoogle Scholar
  14. Bugarski, B., Amsden, B., Neufeld, R. J., Poncelet, D., and Goosen, M. F. A. 1994a. Effect of electrode geometry and charge on the production of polymer microbeads by electrostatics. Can. J. Chem. Eng. 72:517–521.Google Scholar
  15. Bugarski, B., Li, Q., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., and Vunjak, G. 1994b. Electrostatic droplet generation: mechanism of polymer droplet formation. Am. Inst. Chem. Eng. J. 40:1026–1031.CrossRefGoogle Scholar
  16. Bugarski, B., Smith, J., Wu, J., and Goosen, M. F. A. 1993. Methods for animal cell immobilization using electrostatic droplet generation. Biotechnol. Tech. 7:677–682.CrossRefGoogle Scholar
  17. Butler, R. W., and Klug, E. D. 1980. Hydroxypropylcellulose. In Handbook of Water-Soluble Gums and Resins, ed. R. L. Davidson, chapt.13. New York: McGraw-Hill.Google Scholar
  18. Cahn, F. 1990. Biomaterials aspects of porous microcarriers for animal cell culture. Trends Biotechnol. 8:131–136.CrossRefGoogle Scholar
  19. Cantarella, M., Cantarella, L., and Alfani, F. 1988. Entrapping of acid phosphatase in polyhydroxyethyl methacrylate matrices. Preparation and kinetic properties. Br. Polymer J. 20: 477–485.CrossRefGoogle Scholar
  20. Cantarella, M., Cantarella, L., Cirielli, G., Gallifuoco, A., and Alfani, F. 1989. Sucrose bioconversion in membrane reactors. J. Membr. Sci. 41:225–236.CrossRefGoogle Scholar
  21. Caraceni, P., Gasbarrini, A., Van Thiel, H. D., and Borle, A. B. 1994. Oxygen free radical formation by rat hepatocytes during ostanoxic reoxygenation: scavenging effect of albumin. Am. J. Physiol. 266:G451–G458.Google Scholar
  22. Chao, K. C., Haugen, M. M., and Royer, G. P. 1986. Stabilization of κ-carrageenan gel with polymeric amines: use of immobilized cells as biocatalysts at elevated temperatures. Biotechnol. Bioeng. 28:1289–1293.CrossRefGoogle Scholar
  23. Cheetham, P. S. J. 1980. Developments in the immobilization of microbial cells and their applications. In Topics in Enzyme and Fermentation Biotechnology, vol. 4, ed. A. Wiseman, pp. 189–238. Chichester: Ellis Horwood Ltd.Google Scholar
  24. Chen, K. C., and Huang, C. T. 1988. Effects of the growth of Trichosporon cutaneum in calcium alginate beads upon bead structure and oxygen transfer. Enzyme Microb. Technol. 10:284–292.CrossRefGoogle Scholar
  25. Chen, K. C., and Lin, Y. F. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16:79–83.CrossRefGoogle Scholar
  26. Chen, T. H., Embree, H. D., Brown, E. M., Taylor, M. M., and Payne, G. F. 2003. Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841.CrossRefGoogle Scholar
  27. Chibata, I. 1979. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatasubramanian, pp. 187–202. Washington D.C.: American Chemical Society.CrossRefGoogle Scholar
  28. Chibata, I., Tosa, T., and Sato, T. 1986. Methods of cell immobilization. In Manual of Industrial Microbiology and Biotechnology, ed. A. L. Demain, and N. A. Solomon, pp. 217–229. Washington, DC: American Society for Microbiology.Google Scholar
  29. Chibata, I., Tosa, T., Yamamoto, K., and Takata, I. 1987. Production of L-malic acid by immobilized microbial cells. Methods Enzymol. 136:455–463.CrossRefGoogle Scholar
  30. Danity, A. L., Goulding, K. H., Robinson, P. K., Simpkins, I., and Trevan, M. D. 1986. Stability of alginate-immobilized algal cells. Biotechnol. Bioeng. 28:210–216.CrossRefGoogle Scholar
  31. Davidson, A. 2004. Seafood of South-East Asia: A Comprehensive Guide with Recipes. Berkeley CA: Ten Speed Press.Google Scholar
  32. Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill.Google Scholar
  33. Dean R. C., Silver, F. H., and Berg, R. A. 1989. Weighted collagen microsponge for immobilising bioactive materials. United States Patent #4,863,856.Google Scholar
  34. Daynes, H. A. 1920. The process of diffusion through a rubber membrane. Proc. R. Soc. (Lond.) 197:286–307.CrossRefGoogle Scholar
  35. Delrieu, P. E., and Ding, L. 2001. Agar gel bead composition and method. United States Patent #6,319,507.Google Scholar
  36. Deo, Y. M., and Gaucher, G. M. 1983. Semi-continuous production of the antibiotic patulin by immobilized cells of Penicillium urticae. Biotechnol. Lett. 5:125–130.CrossRefGoogle Scholar
  37. De Rosa, M., Gambacorta, A., Lama, L., and Nicolaus, B. 1981. Immobilization of thermophilic microbial cells in crude egg white. Biotechnol. Lett. 3:183–186.CrossRefGoogle Scholar
  38. Dinelli, D. 1972. Entrapment in solid fibers. Proc. Biochem. 7:9–12.Google Scholar
  39. Dow Chemical Co. 1974. Handbook on Methocel Cellulose Ether Products. Midland, MI.Google Scholar
  40. D’Souza, S. F., Melo, J. S., Deshpande, A., and Nadkarni, G. B. 1983. Immobilization of yeast cells by adhesion to glass surface using polyethylenimine. Biotechnol. Lett. 8:643–648.CrossRefGoogle Scholar
  41. Farghali, H., Kamenikova, L., and Hynie, S. 1994. Preparation of functionally active immobilized and perfused mammalian cells: an example of hepatocytes bioreactor. Physiol. Res. 43: 121–125.Google Scholar
  42. Farghali, H., Williams, D. S., Caraceni, P., Borle, A. B., Gasbarrini, A., Gavaler, J., Rilo, H. L., Ho, C., and Van Thiel, D. H. 1993. Effect of ethanol on energy status and intracellular calcium of Sertoli cells: a study on immobilized perfused cells. Endocrinology 133:2749–2755.CrossRefGoogle Scholar
  43. Felix, H. R., and Mosbach, K. 1982. Enhanced stability of enzymes in permeabilized and immobilized cells. Biotechnol. Lett. 4:181–186.CrossRefGoogle Scholar
  44. Foxall, D. L., Cohen, J. S., and Mitchell, J. B. 1984. Continuous perfusion of mammalian cells embedded in agarose gel threads. Exp. Cell Res. 154:521–529.CrossRefGoogle Scholar
  45. Frein, E. M., Montenecourt, B. S., and Eveleigh, D. E. 1982. Cellulase production by Trichoderma reesei immobilized on κ-carrageenan. Biotechnol. Lett. 4:287–292.CrossRefGoogle Scholar
  46. Fujimura, T., and Kaetsu, I. 1982. Immobilization of yeast cells by radiation-induced polymerization. Zeitschrift fur Naturforschung 37:102–106.Google Scholar
  47. Fukui, S., Sonomoto, K., and Tanaka, A. 1987. Entrapment of biocatalysts with photo crosslinkable resin prepolymers and urethane resin prepolymers. Methods Enzymol. 135: 230–252.CrossRefGoogle Scholar
  48. Funaki, K. 1947. Manufacturing Method of Agar from Seaweeds. Japanese Patent #175,290.Google Scholar
  49. Ganz, A. J. 1966. Cellulose gum—a texture modifier. Manuf. Confect. 46:23–33.Google Scholar
  50. Gillies, R. J., Galons, J. P., McGovern, R. A., Scherer, P. G., Lien, Y. H., Job, C., Ratcliff, R., Chapa, F., Cerdan, S., and Dale, B. E. 1993. Design and applications of NMR-compatible bioreactor circuits for extended perfusion of high-density mammalian cell cultures. NMR Biomed. 8: 95–104.CrossRefGoogle Scholar
  51. Glicksman, M. 1969. Gum Technology in the Food Industry. New York: Academic.Google Scholar
  52. Goosen, M. F. A. 1994. Fundamentals of microencapsulation. In Pancreatic Islet Transplantation, vol. III: Immunoisolation of Pancreatic Islets, ed. R. P. Lanza, and W. L. Chick, pp. 21–44. Austin, TX: R.G. Landes.Google Scholar
  53. Goosen, M. F. A., O’Shea, G. M., Gharapetian, H., and Sun, A. M. 1986. Immobilization of living cells in bio-compatible semipermeable microcapsules: biomedical and potential biochemical engineering applications. In Polymers in Medicine, ed. E. Chielini, pp. 235–246. New York: Plenum.CrossRefGoogle Scholar
  54. Greminger, G. K. Jr., and Krumel, K. L. 1980. Alkyl and hydroxyalkylcellulose. In Handbook of Water-Soluble Gums and Resins, ed. R. L. Davidson,  chap. 3, pp. 1–25. New York: McGraw-Hill.Google Scholar
  55. Grizeau, D., and Navarro, J. M. 1986. Glycerol production by Dunaliella tertiolecta immobilized with Ca alginate beads. Biotechnol. Lett. 8:261–264.CrossRefGoogle Scholar
  56. Grote, W., Lee, K. J., and Rogers, P. L. 1980. Continuous ethanol production by immobilized cells of Zymomonas mobilis. Biotechnol. Lett. 2:481–486.CrossRefGoogle Scholar
  57. Guiry, M. D., and Guiry, G. M. 2008. Gelidium. In AlgaeBase, World-wide electronic publication. Galway: National University of Ireland.
  58. Guiseley, K. B. 1989. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microb. Technol. 11:706–716.CrossRefGoogle Scholar
  59. Haggstrom, L., and Molin, N. 1980. Calcium alginate immobilized cells of Clostridium acetobutylicum for solvent production. Biotechnol. Lett. 2:241–246.CrossRefGoogle Scholar
  60. Hashimoto, S., and Furukawa, K. 1987. Immobilization of activated sludge by PVA-boric acid method. Biotechnol. Bioeng. 30:52–59.CrossRefGoogle Scholar
  61. Hayashi, K., and Okazaki, A. 1970. In ‘Kanten’ Handbook, pp. 1–534. Tokyo: Korin-shoin.Google Scholar
  62. Hercules Inc. 1978. Cellulose Gum—Chemical and Physical Properties. Wilmington, DE: Hercules Inc.Google Scholar
  63. Hirst, E. L., and Rees, D. A. 1965. The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J. Chem. Soc. 1182–1187.Google Scholar
  64. Iwamoto, S., Nakagawa, K., Sugiura, S., and Nakajima, M. 2002. Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS PharmSciTech. 3(3):article 25.CrossRefGoogle Scholar
  65. Jackson, D. S. 1987. Chitosan-glycerol-water gel. United States Patent #4,659,700.Google Scholar
  66. Jain, K., Rubin, A. L., and Smith, B. 2008. Preparation of agarose coated, solid agarose beads containing secretory cells. United States Patent #RE040555.Google Scholar
  67. Jen, A. C., Wake, M. C. and Mikos, A. G. 1996. Review—hydrogels for cell immobilization. Biotechnology and Bioengineering 50:357–364.CrossRefGoogle Scholar
  68. Jeong, S. K., Cho, J. S., Kong, I. S., Jeong, H. D., and Kim, J. K. 2009. Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing. Biotechnol. Bioprocess Eng. 14:238–247.CrossRefGoogle Scholar
  69. Johansen, A., and Flink, J. M. 1986. A new principle for immobilized yeast reactors based on internal gelation of alginate. Biotechnol. Lett. 8:121–126.CrossRefGoogle Scholar
  70. Jones, A., and Veliky, I. A. 1981. Effect of medium constituents on the viability of immobilized plant cells. Can. J. Bot. 59:2095–2101.CrossRefGoogle Scholar
  71. Joshi, S., and Yamazaki, H. 1986. Cellulose acetate entrapment of Escherichia coli on cotton cloth for aspartate production. Biotechnol. Lett. 8:277–282.CrossRefGoogle Scholar
  72. Kawakatsu, T., Trägårdh, G., Trägårdh, C., Nakajima, M., Oda, N., and Yonemoto, T. 2001. The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids Surf. A. 179:29–37.CrossRefGoogle Scholar
  73. Kean, T., Roth, S., and Thanou, M. 2005. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control Release 103:643–653.CrossRefGoogle Scholar
  74. Keppeler, S., Ellis, A., and Jacquier, J. C. 2009. Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 78:973–977.CrossRefGoogle Scholar
  75. Khachatourians, G. G., Brosseau, J. D., and Child, J. J. 1982. Thymidine phosphorylase activity of anucleate minicells of E. coli immobilized in an agarose gel matrix. Biotechnology Letters 4:735–740.CrossRefGoogle Scholar
  76. Khalid, M. N., Ho, L., Agnely, F., Grossiord, J. L., and Couarraze, G. 1999. Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network—comparison with a chitosan reference gel. STP Pharma Sciences 9:359–364.Google Scholar
  77. Klein, J., and Eng, H. 1979. Immobilization of microbial cells in epoxy carrier systems. Biotechnol. Lett. 1:171–176.CrossRefGoogle Scholar
  78. Klein, J., and Kluge, M. 1981. Immobilization of microbial cells in polyurethane matrices. Biotechnol. Lett. 3:65–70.CrossRefGoogle Scholar
  79. Klein, J., and Kressdorf, B. 1982. Immobilization of living whole cells in an epoxy matrix. Biotechnol. Lett. 4:357–480.CrossRefGoogle Scholar
  80. Klein, J., and Kressdorf, B. 1983. Improvement of productivity and efficiency in ethanol production with Ca-alginate immobilized Zymomonas mobilis. Biotechnol. Lett. 5:497–502.CrossRefGoogle Scholar
  81. Klein, J., and Wagner, F. 1983. Methods for the immobilization of microbial cells. Appl. Biochem. Bioeng. 4:11–51.Google Scholar
  82. Klein, J., Hackel, V., and Wagner, F. 1979. Phenol degradation by Candida tropicalis whole cells entrapped in polymeric ionic networks. In Immobilized Microbial Cells. ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 101–18. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  83. Kluge, M., Klein, J., and Wagner, F. 1982. Production of 6-aminopenicillanic acid by immobilized Pleurotus ostreatus. Biotechnol. Lett. 4:293–296.CrossRefGoogle Scholar
  84. Kofuji, K., Shibata, K., Murata, Y., Miyamoto, E., and Kawashima, S. 1999. Preparation and drug retention of biodegradable chitosan gel beads. Chem. Pharmaceut. Bull. 47:1494–1496.CrossRefGoogle Scholar
  85. Kotte, H., Grundig, B., Vorlop, K. D., Strehlitz, B., and Stottmeister, U. 1995. Methyl phenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols. Anal. Chem. 67:65–70.CrossRefGoogle Scholar
  86. Krassig, D. H. 1985. Structure of cellulose and its relation to properties of cellulose fibers. In Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications, ed. J. F. Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams,  chapt. 1. New York: Halsted Press.Google Scholar
  87. Krouwel, P. G., Groot, W. J., and Kossen, N. W. F. 1983. Continuous IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor. Biotechnol. Bioeng. 25:281–299.CrossRefGoogle Scholar
  88. Krouwel, P. G., Harder, A., and Kossen, N. W. F. 1982. Tensile stress-strain measurements of materials used for immobilization. Biotechnol. Lett. 4:103–108.CrossRefGoogle Scholar
  89. Langer, R., and Vacanti, J. P. 1993. Tissue engineering. Science 260:920–926.CrossRefGoogle Scholar
  90. Lin, Y. F., and Chen, K. C. 1995. Denitrification and methanogensis in a co-immobilized mixed culture system. Water Res. 29:35–43.CrossRefGoogle Scholar
  91. Linko, Y.Y., Pohjola, L., and Linko, P. 1977. Entrapped glucose isomerase for high fructose syrup production. Proc. Biochem. 12:14–16.Google Scholar
  92. Livernoche, D., Jurasek, L., Desrochers, M., and Veliky, I. A. 1981. Decolorization of a kraft mill effluent with fungal mycelium immobilized in calcium alginate gel. Biotechnol. Lett. 3: 701–706.CrossRefGoogle Scholar
  93. Margaritis, A., Bajpal, P. K., and Wallace, J. B. 1981. High ethanol productivity using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol. Lett. 3:613–618.CrossRefGoogle Scholar
  94. Matsuhashi, T. 1972. Firmness of agar gel with respect to heat energy required to dissociate cross linkage of gel. In Proceedings of the 7th Internationl Seaweed Symposium, ed. T. Nishizawa, p. 460. Tokyo: University of Tokyo Press.Google Scholar
  95. Matsuhashi, T. 1978. Fundamental studies on the manufacture of agar. PhD thesis. Tokyo University of Agriculture. Tokyo, Japan.Google Scholar
  96. Matteau, P. P., and Saddler, J. N. 1982. Glucose production using immobilized mycelial-associated β-glucosidase of Trichoderama E58. Biotechnol. Lett. 4:513–518.CrossRefGoogle Scholar
  97. Mattiasson, B. 1979. Application of immobilized whole cells in analysis. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 203–220. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  98. Mattiasson, B. 1983. Immobilized Cells and Organelles, vols. 1 and 2. Boca Raton: CRC Press.Google Scholar
  99. Matulovic, U., Rasch, D., and Wagner, F. 1986. New equipment for the scaled up production of small spherical biocatalysts. Biotechnol. Lett. 8:485–490.CrossRefGoogle Scholar
  100. McDowell, R. H. 1960. Applications of alginates. Rev. Pure Appl. Chem. 10:1–5.Google Scholar
  101. McGee, H. 2004. On Food and Cooking: the Science and Lore of the Kitchen. New York: Scribner.Google Scholar
  102. Mi, F. L., Shyu, S. S., Kuan, C. Y., Lee S. T., Lu, K. T., and Jang, S. F. 1999. Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer J. Appl. Polym. Sci. 74:1868–1879.CrossRefGoogle Scholar
  103. Michon, C., Cuvelier, G., Relkin, P., and Launay, B. 1997. Influence of thermal history on the stability of gelatin gels. Int. J. Biol. Macromol. 20:259–264.CrossRefGoogle Scholar
  104. Morris, P., and Fowler, M. W. 1981. A new method for the production of fine plant cell suspension culture. Plant Cell, Tissue and Organ Culture 1:15–24.CrossRefGoogle Scholar
  105. Murano, E., and Kaim, J. M. 1995. Gracilaria and its cultivation. J. Appl. Phycol. 7: 245–254.CrossRefGoogle Scholar
  106. Muscat, A., Beyersdorf, J., and Vorlop, K. D. 1995. Poly(carbamoyl sulphonate) hydrogel, a new polymer material for cell entrapment. Biosens. Bioelectron. 10:11–14.CrossRefGoogle Scholar
  107. Muscat, A., Patal, A. V., and Vorlop, K. D. 1996. Cell entrapment in poly(carbamoyl sulfonate) hydrogels. In The Polymeric Materials Encyclopedia, ed. J. C. Salamone, pp. 1009–1013 Boca Raton: CRC.Google Scholar
  108. Myoga, H., Asano, H., Nomura, Y., and Yoshida, H. 1991. Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method. Water Sci. Technol. 23:1117–1124.Google Scholar
  109. Nussinovitch, A. 1994. Resemblance of immobilized Trichoderma viride fungal spores in an alginate matrix to a composite material. Biotechnol. Prog. 10:551–554.CrossRefGoogle Scholar
  110. Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.CrossRefGoogle Scholar
  111. Nussinovitch, A., Kopelman, I. J., and Mizrahi, S. 1990. Effect of hydrocolloid and mineral content on the mechanical properties of gels. Food Hydrocolloids 4:257–265.CrossRefGoogle Scholar
  112. Oh, J. K., Drumright, R., Siegwart, D. J., and Matyjaszewski, K. 2008. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33:448–477.CrossRefGoogle Scholar
  113. Osada, Y., and Kajiwara, K. 2001. Gels. In Handbook vol. 4. Environment: Earth Environment & Gels, pp. 75–154. San Diego and San Francisco: Academic.CrossRefGoogle Scholar
  114. Ott, E. 1946. High polymers. In Cellulose and Cellulose Derivatives. Vol. 5 in the Series: High Polymers. New York: Interscience Publishers.Google Scholar
  115. Palmieri, G., Giardina, P., Desiderio, B., Marzullo, L., Giamberini, M., and Sannita, G. 1994. A new enzyme immobilization procedure using copper alginate gel: application to fungal phenol oxidase. Enzyme Microb. Technol. 16:151–158.CrossRefGoogle Scholar
  116. Parascandola, P., and Scardi, V. 1981. Gelatin-entrapped whole-cell invertase. Biotechnol. Lett. 3:369–374.CrossRefGoogle Scholar
  117. Passos, F. M. L., and Swaisgood, H. E. 1993. Development of a spiral mesh bioreactor with immobilized lactococci for continuous inoculation and acidification of milk. J. Dairy Sci. 76:2856–2867.CrossRefGoogle Scholar
  118. Passos, F. M. L., Klaenhammer, T. R., and Swaisgood, H. E. 1994. Response to phage infection of immobilized lactococci during continuous acidification and inoculation of skim milk. J. Dairy Res. 61:537–544.CrossRefGoogle Scholar
  119. Phillips, G. O., and Williams, P. A. 2000. Handbook of Hydrocolloids. Cambridge, UK: CRC Woodhead Publishing Limited.Google Scholar
  120. Qu, X., Wirsen, A., and Albertsson, A. C. 1999a. Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 74:3193–3202.CrossRefGoogle Scholar
  121. Qu, X., Wirsen, A., and Albertsson, A. C. 1999b. Structural change and swelling mechanism of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 74:3186–3192.CrossRefGoogle Scholar
  122. Rehg, T., Dorger, C., and Chau, P. C. 1986. Application of an atomizer in producing small alginate gel beads for cell immobilization. Biotechnol. Lett. 8:111–114.CrossRefGoogle Scholar
  123. Rochefort , W. E., Rehg, T., and Chau, P. C. 1986. Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol. Lett. 8:115–120.CrossRefGoogle Scholar
  124. Royer, G., Livernoche, D., Desrocher, M., Jurasek, L., Rouleau, D., and Mayer, R. C. 1983. Decolorization of kraft mill effluent: kinetics of a continuous process using immobilized Coriolus versicolor. Biotechnol. Lett. 5:321–326.Google Scholar
  125. Sakimae, A., and Onishi, H. 1981. Preparation of immobilized enzymes of micro-organisms. United States Patent #4,276,381.Google Scholar
  126. Sanroman, A., Chamy, R., Nunez, M. J., and Lema, J. M. 1994. Alcoholic fermentation of xylose by immobilized Pichia stipitis in fixed-bed pulsed bioreactor. Enzyme Microb. Technol. 16: 72–79.CrossRefGoogle Scholar
  127. Sarkar, J. M., and Mayaudon, J. 1983. Alanine synthesis by immobilized Corynebacterium dismutans cells. Biotechnol. Lett. 5:201–206.CrossRefGoogle Scholar
  128. Segawa, S. 1965. Genshoku Nippon Kaiso Zukan (Natural-Color Picture Book of Marine Seaweeds). Tokyo: Hoikusha.Google Scholar
  129. Shahidi, F., and Synowiecki, J. 1991. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39:1527–1532.CrossRefGoogle Scholar
  130. Shindo, S., and Kamimura, M. 1990. Immobilization of yeast with hollow PVA gel beads. J. Ferment. Bioeng. 70:232–234.CrossRefGoogle Scholar
  131. SivaRaman, H., Rao, B. S., Pundle, A. V., and SivaRaman, C. 1982. Continuous ethanol production by yeast cells immobilized in open pore gelatin matrix. Biotechnol. Lett. 4:359–364.CrossRefGoogle Scholar
  132. Stasnley, N. F. 1990. Carrageenans. In Food Gels, ed. P. Harris, pp. 79–119. London: Elsevier Applied Science.CrossRefGoogle Scholar
  133. Steentoft, M., and Farham, W. F. 1997. Northern distribution boundaries and thermal requirements of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Atlantic Europe and Scandinavia. Nord. J. Bot. 5:87–93.CrossRefGoogle Scholar
  134. Stelzer, G. I., and Klug, E. D. 1980. Carboxymethylcellulose. In Handbook of Water-soluble Gums and Resins, ed. R. L. Davidson,  chapt. 4, pp. 1–28. New York: McGraw-Hill.Google Scholar
  135. Stenroos, S. L., Linko, Y. Y., and Linko, P. 1982. Production of L-lactic acid with immobilized Lactobacillus delbrueckii. Biotechnol. Lett. 4:159–164.CrossRefGoogle Scholar
  136. Stocklein, W., Eisgruber, A., and Schmidt, H. L. 1983. Conversion of L-phenylalanine to L-tyrosine by immobilized bacteria. Biotechnol. Lett. 5:703–708.CrossRefGoogle Scholar
  137. Sugiura, S., Nakajima, M., Ushijima, H., Yamamoto, K., and Seki, M. 2001. Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J. Chem. Eng. Jpn. 34:757–765.CrossRefGoogle Scholar
  138. Sun, A. M. 1994. Microencapsulation as bioartificial organs: allografts and xenografts. In Pancreatic Islet Transplantation, vol. III: Immunoisolation of Pancreatic Islets, ed. R. P. Lanza, and W. L. Chick, pp. 45–58. Austin, TX: R.G. Landes.Google Scholar
  139. Suzuki, S., and Karube, I. 1979. Microbial electrodes sensors for cephalosporins and glucose. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 221–236. Washington, DC: American Chemical Society.Google Scholar
  140. Tampion, J., and Tampion, M. D. 1987. Immobilized Cells: Principles and Applications. Cambridge and New York: Cambridge University Press.Google Scholar
  141. Tramper, J., Van Der Plas, H. C., Van Der Kaaden, A., Muller, F., and Middlehoven, W. J. 1979. Xanthine oxidase activity of Arthrobacter X-4-cells immobilized in glutaraldehyde-crosslinked gelatin. Biotechnol. Lett. 1:397–402.CrossRefGoogle Scholar
  142. Tsai, S. W., Jeng, M. J., Tsay, R. Y., and Wang, Y. J. 1998. Gel beads composed of collagen reconstituted in alginate. Biotechnol. Tech. 12:21–23.CrossRefGoogle Scholar
  143. Vandelli, M. A., Rivasi, F., Guerra, P., Forni, F., and Arletti, R. 2001. Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int. J. Pharm. 215:175–184.CrossRefGoogle Scholar
  144. Vieth, W. R., and Venkastsubramanian, K. 1979. Immobilized microbial cells in complex biocatalysis. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkastubramanian, pp. 1–11. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  145. Vorlop, K. D., and Klein, J. 1981. Formation of spherical chitosan biocatalysts by iontropic gelation. Biotechnol. Lett. 3:9–14.CrossRefGoogle Scholar
  146. Vorlop, K. D., Muscat, A., and Beyersdorf, J. 1992. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity. Biotechnol. Tech. 6:483–488.CrossRefGoogle Scholar
  147. Wada, M., Kato, J., and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 10:275–287.CrossRefGoogle Scholar
  148. Wang, H. Y., and Hettwer, D. J. 1982. Cell immobilization in κ-carrageenan with tricalcium phosphate. Biotechnol. Bioeng. 24:1827–1838.CrossRefGoogle Scholar
  149. Wang, H. Y., Lee, S. S., Takach, Y., and Chethon, L. 1982. Maximizing microbial cell loading in immobilized cell systems. In Biotechnology and Bioengineering Symposium 12, ed. E. L. Gaden Jr., pp. 139–146. New York: John Wiley.Google Scholar
  150. Ward, K. Jr., and Seib, P. A. 1970. Cellulose, lichenan and chitin. In The Carbohydrates—Chemistry and Biochemistry, 2nd edn.,Vol. 2A, ed. W. Pigman, D. Horton, and A. Herp, pp. 413–445. New York: Academic.Google Scholar
  151. Wheatley, M. A., and Phillips, C. R. 1983. The influence of internal and external diffusional limitations on the observed kinetics of immobilized whole bacterial cells with cell-associated β-glucosidase activity. Biotechnol. Lett. 5:79–84.CrossRefGoogle Scholar
  152. Whistler, R. L. 1973. Industrial Gums, 2nd edn. New York: Academic.Google Scholar
  153. Whistler, R. L., and Kirby, K. W. 1959. Composition of alginic acid of Macrocystis pyrifera. Hopper-Seyler’s Z. Physiol. Chem. 314:46.CrossRefGoogle Scholar
  154. Whistler, R. L., and Zysk, J. R. 1978. Carbohydrates. In Encyclopedia of Chemical Technology, 3rd edn., vol. 4, ed. M. Grayson and E. Eckroth, pp. 535–555. New York: John Wiley & Sons.Google Scholar
  155. Wikstrom, P., Szwajcer, E., Brodelius, P., Nilsson, K., and Mosbach, K. 1982. Formation of α-keto acids from amino acids using immobilized bacteria and algae. Biotechnol. Lett. 4:153–158.CrossRefGoogle Scholar
  156. Wilke, B., Wilke, T., and Vorlop, K. D. 1994. Poly(carbamoylsulphonate) as a matrix for whole cell immobilization-biological characterization. Biotechnol. Tech. 8:623–626.Google Scholar
  157. Wu, K. Y. A., and Wisecarver, K. D. 1992. Cell immobilization using PVA cross-linked with boric acid. Biotechnol. Bioeng. 39:447–449.CrossRefGoogle Scholar
  158. Yanagawa, T. 1942. Kanten. pp. 1–352. Tokyo: Kogyo-tosho Co.Google Scholar
  159. Yannas, I. V., and Kirk, J. F. 1984. Method for the preparation of collagen-glycosaminoglycan composite materials. United States Patent #4,448,718.Google Scholar
  160. Zecher, D., and Van Coillie, R. 1992. Cellulose derivatives. In Thickening and Gelling Agents for Food, ed. A. Immson, pp. 40–65. Glasgow: Blackie Academic & Professional, an imprint of Chapman & Hall.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations