Skip to main content

Bead Formation, Strengthening, and Modification

  • Chapter
  • First Online:
Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications

Abstract

This chapter begins with a brief overview of the typical polymeric materials used for bead creation and their limitations. A full description is then provided of procedures to construct different bead forms, e.g., from cylindrical to almost perfectly spherical, by changing both the molds and the media into which the molten or dissolved hydrocolloid preparation is dropped or transferred. Also, some information on dropping methods, changing drop size and distribution, and liquid sprays is provided, affording a measure of control over bead size and distribution. The various water-soluble polymers that can be used for bead formation are discussed at length. The properties of gel beads prepared from agar/agarose ?-carrageenan, alginate, celluloses, chitosan, and to a lesser extent polyacrylamide and other synthetic polymers, among many others, are described. The use of crosslinking agents for both creation and strengthening of several bead types is thoroughly covered. Special methods to modify the porosity of the formed beads are also described, as are methods of slow dissolution of crystals by acid to facilitate better growth of embedded cells via pH regulation. A special section is devoted to beads prepared from proteins, ways to increase their stability (with, for example, glutaraldehyde), and their influence on the cells embedded within them. Since a combination of alternative methods may well provide a good means of overcoming the evident shortcomings of current bead-formation techniques, at the end of this chapter, a few approaches are presented, such as adding epoxy- resin reagent and curing agent to alginate for matrix stabilization, and other less known approaches for bead stabilization, as well as less traditional ways of producing and modifying beads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfani, F., Cantarella, L., Gallifuoco, A., Pezzullo, L., Scardi, V., and Cantarella, M. 1987. Characterization of the β-glucosidase activity associated with immobilized cellulase of A. niger. Ann. NY Acad. Sci. 501:503–507.

    Article  CAS  Google Scholar 

  • Altankov, G., Brodvarova, I., and Rashkov, I. 1991. Synthesis of protein-coated gelatin microspheres and their use as microcarriers for cell culture 1. Derivatisation with native collagen. J. Biomat. Sci. Polym. Ed. 2:81–89.

    Article  CAS  Google Scholar 

  • Aqualon Co. 1989. Culminal MC, MHEC, MHPC, Physical and Chemical Properties, Wilmington, DE; Benecel High Purity MC, MHEC, MHPC, Physical and Chemical Properties, Wilmington, DE.

    Google Scholar 

  • Araki, C. 1937. Agar-agar. III. Acetylation of the agar-like substance of Gelidium amansii L. J. Chem. Soc. Jpn. 58:1338–1350.

    CAS  Google Scholar 

  • Arigo, O., Takagi, H., Nishizawa, H., and Sano, Y. 1987. Immobilization of microorganisms with PVA hardened by interative freezing and thawing. J. Ferment. Technol. 65:651–658.

    Article  Google Scholar 

  • Armisen, R., and Kain, J. M. 1995. World-wide use and importance of Gracilaria. J. Appl. Phycol. 7:231–243.

    Article  Google Scholar 

  • Banerjee, M., Chakrabarty, A., and Majumdar, S. K. 1982. Immobilization of yeast cells containing β-galactosidase. Biotechnol. Bioeng. 24:1839–1850.

    Article  CAS  Google Scholar 

  • Bang, W. G., Berhrendt, U., Lang, S., and Wagner, F. 1983. Continuous production of L-tryptophan from indole and L-serine by immobilized Eschericihia coli cells. Biotechnol. Bioeng. 25: 1013–1025.

    Article  CAS  Google Scholar 

  • Berkland, C., Kim, K., and Pack, D. 2001. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control Release 73:59–74.

    Article  CAS  Google Scholar 

  • Birnbaum, S., Pendleton, R., Larsson, P., and Mosbach, K. 1981. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol. Lett. 3:393–400.

    Article  CAS  Google Scholar 

  • Brink, L. E. S., and Tramper, J., 1986. Modelling the effects of mass transfer on kinetics of propene epoxidation of immobilized Mycobacterium cells: 2. Product inhibition. Enzyme Microb. Technol. 8:334–340.

    Article  CAS  Google Scholar 

  • Brodelius, P., and Nilsson, K. 1980. Entrapment of plant cells in different matrices. FEBS Lett. 122:312–316.

    Article  CAS  Google Scholar 

  • Bucke, C. 1983. Immobilized cells. Philos. Trans. R. Soc. Lond., Ser. B, 300:369–389.

    Article  CAS  Google Scholar 

  • Bugarski, B., Amsden, B., Neufeld, R. J., Poncelet, D., and Goosen, M. F. A. 1994a. Effect of electrode geometry and charge on the production of polymer microbeads by electrostatics. Can. J. Chem. Eng. 72:517–521.

    CAS  Google Scholar 

  • Bugarski, B., Li, Q., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., and Vunjak, G. 1994b. Electrostatic droplet generation: mechanism of polymer droplet formation. Am. Inst. Chem. Eng. J. 40:1026–1031.

    Article  Google Scholar 

  • Bugarski, B., Smith, J., Wu, J., and Goosen, M. F. A. 1993. Methods for animal cell immobilization using electrostatic droplet generation. Biotechnol. Tech. 7:677–682.

    Article  CAS  Google Scholar 

  • Butler, R. W., and Klug, E. D. 1980. Hydroxypropylcellulose. In Handbook of Water-Soluble Gums and Resins, ed. R. L. Davidson, chapt.13. New York: McGraw-Hill.

    Google Scholar 

  • Cahn, F. 1990. Biomaterials aspects of porous microcarriers for animal cell culture. Trends Biotechnol. 8:131–136.

    Article  CAS  Google Scholar 

  • Cantarella, M., Cantarella, L., and Alfani, F. 1988. Entrapping of acid phosphatase in polyhydroxyethyl methacrylate matrices. Preparation and kinetic properties. Br. Polymer J. 20: 477–485.

    Article  CAS  Google Scholar 

  • Cantarella, M., Cantarella, L., Cirielli, G., Gallifuoco, A., and Alfani, F. 1989. Sucrose bioconversion in membrane reactors. J. Membr. Sci. 41:225–236.

    Article  CAS  Google Scholar 

  • Caraceni, P., Gasbarrini, A., Van Thiel, H. D., and Borle, A. B. 1994. Oxygen free radical formation by rat hepatocytes during ostanoxic reoxygenation: scavenging effect of albumin. Am. J. Physiol. 266:G451–G458.

    CAS  Google Scholar 

  • Chao, K. C., Haugen, M. M., and Royer, G. P. 1986. Stabilization of κ-carrageenan gel with polymeric amines: use of immobilized cells as biocatalysts at elevated temperatures. Biotechnol. Bioeng. 28:1289–1293.

    Article  CAS  Google Scholar 

  • Cheetham, P. S. J. 1980. Developments in the immobilization of microbial cells and their applications. In Topics in Enzyme and Fermentation Biotechnology, vol. 4, ed. A. Wiseman, pp. 189–238. Chichester: Ellis Horwood Ltd.

    Google Scholar 

  • Chen, K. C., and Huang, C. T. 1988. Effects of the growth of Trichosporon cutaneum in calcium alginate beads upon bead structure and oxygen transfer. Enzyme Microb. Technol. 10:284–292.

    Article  CAS  Google Scholar 

  • Chen, K. C., and Lin, Y. F. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16:79–83.

    Article  CAS  Google Scholar 

  • Chen, T. H., Embree, H. D., Brown, E. M., Taylor, M. M., and Payne, G. F. 2003. Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841.

    Article  CAS  Google Scholar 

  • Chibata, I. 1979. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatasubramanian, pp. 187–202. Washington D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Chibata, I., Tosa, T., and Sato, T. 1986. Methods of cell immobilization. In Manual of Industrial Microbiology and Biotechnology, ed. A. L. Demain, and N. A. Solomon, pp. 217–229. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Chibata, I., Tosa, T., Yamamoto, K., and Takata, I. 1987. Production of L-malic acid by immobilized microbial cells. Methods Enzymol. 136:455–463.

    Article  CAS  Google Scholar 

  • Danity, A. L., Goulding, K. H., Robinson, P. K., Simpkins, I., and Trevan, M. D. 1986. Stability of alginate-immobilized algal cells. Biotechnol. Bioeng. 28:210–216.

    Article  Google Scholar 

  • Davidson, A. 2004. Seafood of South-East Asia: A Comprehensive Guide with Recipes. Berkeley CA: Ten Speed Press.

    Google Scholar 

  • Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill.

    Google Scholar 

  • Dean R. C., Silver, F. H., and Berg, R. A. 1989. Weighted collagen microsponge for immobilising bioactive materials. United States Patent #4,863,856.

    Google Scholar 

  • Daynes, H. A. 1920. The process of diffusion through a rubber membrane. Proc. R. Soc. (Lond.) 197:286–307.

    Article  Google Scholar 

  • Delrieu, P. E., and Ding, L. 2001. Agar gel bead composition and method. United States Patent #6,319,507.

    Google Scholar 

  • Deo, Y. M., and Gaucher, G. M. 1983. Semi-continuous production of the antibiotic patulin by immobilized cells of Penicillium urticae. Biotechnol. Lett. 5:125–130.

    Article  CAS  Google Scholar 

  • De Rosa, M., Gambacorta, A., Lama, L., and Nicolaus, B. 1981. Immobilization of thermophilic microbial cells in crude egg white. Biotechnol. Lett. 3:183–186.

    Article  Google Scholar 

  • Dinelli, D. 1972. Entrapment in solid fibers. Proc. Biochem. 7:9–12.

    CAS  Google Scholar 

  • Dow Chemical Co. 1974. Handbook on Methocel Cellulose Ether Products. Midland, MI.

    Google Scholar 

  • D’Souza, S. F., Melo, J. S., Deshpande, A., and Nadkarni, G. B. 1983. Immobilization of yeast cells by adhesion to glass surface using polyethylenimine. Biotechnol. Lett. 8:643–648.

    Article  Google Scholar 

  • Farghali, H., Kamenikova, L., and Hynie, S. 1994. Preparation of functionally active immobilized and perfused mammalian cells: an example of hepatocytes bioreactor. Physiol. Res. 43: 121–125.

    CAS  Google Scholar 

  • Farghali, H., Williams, D. S., Caraceni, P., Borle, A. B., Gasbarrini, A., Gavaler, J., Rilo, H. L., Ho, C., and Van Thiel, D. H. 1993. Effect of ethanol on energy status and intracellular calcium of Sertoli cells: a study on immobilized perfused cells. Endocrinology 133:2749–2755.

    Article  CAS  Google Scholar 

  • Felix, H. R., and Mosbach, K. 1982. Enhanced stability of enzymes in permeabilized and immobilized cells. Biotechnol. Lett. 4:181–186.

    Article  CAS  Google Scholar 

  • Foxall, D. L., Cohen, J. S., and Mitchell, J. B. 1984. Continuous perfusion of mammalian cells embedded in agarose gel threads. Exp. Cell Res. 154:521–529.

    Article  CAS  Google Scholar 

  • Frein, E. M., Montenecourt, B. S., and Eveleigh, D. E. 1982. Cellulase production by Trichoderma reesei immobilized on κ-carrageenan. Biotechnol. Lett. 4:287–292.

    Article  CAS  Google Scholar 

  • Fujimura, T., and Kaetsu, I. 1982. Immobilization of yeast cells by radiation-induced polymerization. Zeitschrift fur Naturforschung 37:102–106.

    CAS  Google Scholar 

  • Fukui, S., Sonomoto, K., and Tanaka, A. 1987. Entrapment of biocatalysts with photo crosslinkable resin prepolymers and urethane resin prepolymers. Methods Enzymol. 135: 230–252.

    Article  CAS  Google Scholar 

  • Funaki, K. 1947. Manufacturing Method of Agar from Seaweeds. Japanese Patent #175,290.

    Google Scholar 

  • Ganz, A. J. 1966. Cellulose gum—a texture modifier. Manuf. Confect. 46:23–33.

    Google Scholar 

  • Gillies, R. J., Galons, J. P., McGovern, R. A., Scherer, P. G., Lien, Y. H., Job, C., Ratcliff, R., Chapa, F., Cerdan, S., and Dale, B. E. 1993. Design and applications of NMR-compatible bioreactor circuits for extended perfusion of high-density mammalian cell cultures. NMR Biomed. 8: 95–104.

    Article  Google Scholar 

  • Glicksman, M. 1969. Gum Technology in the Food Industry. New York: Academic.

    Google Scholar 

  • Goosen, M. F. A. 1994. Fundamentals of microencapsulation. In Pancreatic Islet Transplantation, vol. III: Immunoisolation of Pancreatic Islets, ed. R. P. Lanza, and W. L. Chick, pp. 21–44. Austin, TX: R.G. Landes.

    Google Scholar 

  • Goosen, M. F. A., O’Shea, G. M., Gharapetian, H., and Sun, A. M. 1986. Immobilization of living cells in bio-compatible semipermeable microcapsules: biomedical and potential biochemical engineering applications. In Polymers in Medicine, ed. E. Chielini, pp. 235–246. New York: Plenum.

    Chapter  Google Scholar 

  • Greminger, G. K. Jr., and Krumel, K. L. 1980. Alkyl and hydroxyalkylcellulose. In Handbook of Water-Soluble Gums and Resins, ed. R. L. Davidson, chap. 3, pp. 1–25. New York: McGraw-Hill.

    Google Scholar 

  • Grizeau, D., and Navarro, J. M. 1986. Glycerol production by Dunaliella tertiolecta immobilized with Ca alginate beads. Biotechnol. Lett. 8:261–264.

    Article  CAS  Google Scholar 

  • Grote, W., Lee, K. J., and Rogers, P. L. 1980. Continuous ethanol production by immobilized cells of Zymomonas mobilis. Biotechnol. Lett. 2:481–486.

    Article  CAS  Google Scholar 

  • Guiry, M. D., and Guiry, G. M. 2008. Gelidium. In AlgaeBase, World-wide electronic publication. Galway: National University of Ireland. http://www.algaebase.org/search/genus/detail/?genus_id=11.

  • Guiseley, K. B. 1989. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microb. Technol. 11:706–716.

    Article  CAS  Google Scholar 

  • Haggstrom, L., and Molin, N. 1980. Calcium alginate immobilized cells of Clostridium acetobutylicum for solvent production. Biotechnol. Lett. 2:241–246.

    Article  Google Scholar 

  • Hashimoto, S., and Furukawa, K. 1987. Immobilization of activated sludge by PVA-boric acid method. Biotechnol. Bioeng. 30:52–59.

    Article  CAS  Google Scholar 

  • Hayashi, K., and Okazaki, A. 1970. In ‘Kanten’ Handbook, pp. 1–534. Tokyo: Korin-shoin.

    Google Scholar 

  • Hercules Inc. 1978. Cellulose Gum—Chemical and Physical Properties. Wilmington, DE: Hercules Inc.

    Google Scholar 

  • Hirst, E. L., and Rees, D. A. 1965. The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J. Chem. Soc. 1182–1187.

    Google Scholar 

  • Iwamoto, S., Nakagawa, K., Sugiura, S., and Nakajima, M. 2002. Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS PharmSciTech. 3(3):article 25.

    Article  Google Scholar 

  • Jackson, D. S. 1987. Chitosan-glycerol-water gel. United States Patent #4,659,700.

    Google Scholar 

  • Jain, K., Rubin, A. L., and Smith, B. 2008. Preparation of agarose coated, solid agarose beads containing secretory cells. United States Patent #RE040555.

    Google Scholar 

  • Jen, A. C., Wake, M. C. and Mikos, A. G. 1996. Review—hydrogels for cell immobilization. Biotechnology and Bioengineering 50:357–364.

    Article  CAS  Google Scholar 

  • Jeong, S. K., Cho, J. S., Kong, I. S., Jeong, H. D., and Kim, J. K. 2009. Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing. Biotechnol. Bioprocess Eng. 14:238–247.

    Article  CAS  Google Scholar 

  • Johansen, A., and Flink, J. M. 1986. A new principle for immobilized yeast reactors based on internal gelation of alginate. Biotechnol. Lett. 8:121–126.

    Article  CAS  Google Scholar 

  • Jones, A., and Veliky, I. A. 1981. Effect of medium constituents on the viability of immobilized plant cells. Can. J. Bot. 59:2095–2101.

    Article  CAS  Google Scholar 

  • Joshi, S., and Yamazaki, H. 1986. Cellulose acetate entrapment of Escherichia coli on cotton cloth for aspartate production. Biotechnol. Lett. 8:277–282.

    Article  CAS  Google Scholar 

  • Kawakatsu, T., TrägÃ¥rdh, G., TrägÃ¥rdh, C., Nakajima, M., Oda, N., and Yonemoto, T. 2001. The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids Surf. A. 179:29–37.

    Article  CAS  Google Scholar 

  • Kean, T., Roth, S., and Thanou, M. 2005. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control Release 103:643–653.

    Article  CAS  Google Scholar 

  • Keppeler, S., Ellis, A., and Jacquier, J. C. 2009. Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 78:973–977.

    Article  CAS  Google Scholar 

  • Khachatourians, G. G., Brosseau, J. D., and Child, J. J. 1982. Thymidine phosphorylase activity of anucleate minicells of E. coli immobilized in an agarose gel matrix. Biotechnology Letters 4:735–740.

    Article  CAS  Google Scholar 

  • Khalid, M. N., Ho, L., Agnely, F., Grossiord, J. L., and Couarraze, G. 1999. Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network—comparison with a chitosan reference gel. STP Pharma Sciences 9:359–364.

    CAS  Google Scholar 

  • Klein, J., and Eng, H. 1979. Immobilization of microbial cells in epoxy carrier systems. Biotechnol. Lett. 1:171–176.

    Article  CAS  Google Scholar 

  • Klein, J., and Kluge, M. 1981. Immobilization of microbial cells in polyurethane matrices. Biotechnol. Lett. 3:65–70.

    Article  CAS  Google Scholar 

  • Klein, J., and Kressdorf, B. 1982. Immobilization of living whole cells in an epoxy matrix. Biotechnol. Lett. 4:357–480.

    Article  Google Scholar 

  • Klein, J., and Kressdorf, B. 1983. Improvement of productivity and efficiency in ethanol production with Ca-alginate immobilized Zymomonas mobilis. Biotechnol. Lett. 5:497–502.

    Article  CAS  Google Scholar 

  • Klein, J., and Wagner, F. 1983. Methods for the immobilization of microbial cells. Appl. Biochem. Bioeng. 4:11–51.

    CAS  Google Scholar 

  • Klein, J., Hackel, V., and Wagner, F. 1979. Phenol degradation by Candida tropicalis whole cells entrapped in polymeric ionic networks. In Immobilized Microbial Cells. ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 101–18. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Kluge, M., Klein, J., and Wagner, F. 1982. Production of 6-aminopenicillanic acid by immobilized Pleurotus ostreatus. Biotechnol. Lett. 4:293–296.

    Article  CAS  Google Scholar 

  • Kofuji, K., Shibata, K., Murata, Y., Miyamoto, E., and Kawashima, S. 1999. Preparation and drug retention of biodegradable chitosan gel beads. Chem. Pharmaceut. Bull. 47:1494–1496.

    Article  CAS  Google Scholar 

  • Kotte, H., Grundig, B., Vorlop, K. D., Strehlitz, B., and Stottmeister, U. 1995. Methyl phenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols. Anal. Chem. 67:65–70.

    Article  CAS  Google Scholar 

  • Krassig, D. H. 1985. Structure of cellulose and its relation to properties of cellulose fibers. In Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications, ed. J. F. Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams, chapt. 1. New York: Halsted Press.

    Google Scholar 

  • Krouwel, P. G., Groot, W. J., and Kossen, N. W. F. 1983. Continuous IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor. Biotechnol. Bioeng. 25:281–299.

    Article  CAS  Google Scholar 

  • Krouwel, P. G., Harder, A., and Kossen, N. W. F. 1982. Tensile stress-strain measurements of materials used for immobilization. Biotechnol. Lett. 4:103–108.

    Article  CAS  Google Scholar 

  • Langer, R., and Vacanti, J. P. 1993. Tissue engineering. Science 260:920–926.

    Article  CAS  Google Scholar 

  • Lin, Y. F., and Chen, K. C. 1995. Denitrification and methanogensis in a co-immobilized mixed culture system. Water Res. 29:35–43.

    Article  CAS  Google Scholar 

  • Linko, Y.Y., Pohjola, L., and Linko, P. 1977. Entrapped glucose isomerase for high fructose syrup production. Proc. Biochem. 12:14–16.

    CAS  Google Scholar 

  • Livernoche, D., Jurasek, L., Desrochers, M., and Veliky, I. A. 1981. Decolorization of a kraft mill effluent with fungal mycelium immobilized in calcium alginate gel. Biotechnol. Lett. 3: 701–706.

    Article  CAS  Google Scholar 

  • Margaritis, A., Bajpal, P. K., and Wallace, J. B. 1981. High ethanol productivity using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol. Lett. 3:613–618.

    Article  CAS  Google Scholar 

  • Matsuhashi, T. 1972. Firmness of agar gel with respect to heat energy required to dissociate cross linkage of gel. In Proceedings of the 7th Internationl Seaweed Symposium, ed. T. Nishizawa, p. 460. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Matsuhashi, T. 1978. Fundamental studies on the manufacture of agar. PhD thesis. Tokyo University of Agriculture. Tokyo, Japan.

    Google Scholar 

  • Matteau, P. P., and Saddler, J. N. 1982. Glucose production using immobilized mycelial-associated β-glucosidase of Trichoderama E58. Biotechnol. Lett. 4:513–518.

    Article  CAS  Google Scholar 

  • Mattiasson, B. 1979. Application of immobilized whole cells in analysis. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 203–220. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Mattiasson, B. 1983. Immobilized Cells and Organelles, vols. 1 and 2. Boca Raton: CRC Press.

    Google Scholar 

  • Matulovic, U., Rasch, D., and Wagner, F. 1986. New equipment for the scaled up production of small spherical biocatalysts. Biotechnol. Lett. 8:485–490.

    Article  CAS  Google Scholar 

  • McDowell, R. H. 1960. Applications of alginates. Rev. Pure Appl. Chem. 10:1–5.

    CAS  Google Scholar 

  • McGee, H. 2004. On Food and Cooking: the Science and Lore of the Kitchen. New York: Scribner.

    Google Scholar 

  • Mi, F. L., Shyu, S. S., Kuan, C. Y., Lee S. T., Lu, K. T., and Jang, S. F. 1999. Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer J. Appl. Polym. Sci. 74:1868–1879.

    Article  CAS  Google Scholar 

  • Michon, C., Cuvelier, G., Relkin, P., and Launay, B. 1997. Influence of thermal history on the stability of gelatin gels. Int. J. Biol. Macromol. 20:259–264.

    Article  CAS  Google Scholar 

  • Morris, P., and Fowler, M. W. 1981. A new method for the production of fine plant cell suspension culture. Plant Cell, Tissue and Organ Culture 1:15–24.

    Article  Google Scholar 

  • Murano, E., and Kaim, J. M. 1995. Gracilaria and its cultivation. J. Appl. Phycol. 7: 245–254.

    Article  CAS  Google Scholar 

  • Muscat, A., Beyersdorf, J., and Vorlop, K. D. 1995. Poly(carbamoyl sulphonate) hydrogel, a new polymer material for cell entrapment. Biosens. Bioelectron. 10:11–14.

    Article  Google Scholar 

  • Muscat, A., Patal, A. V., and Vorlop, K. D. 1996. Cell entrapment in poly(carbamoyl sulfonate) hydrogels. In The Polymeric Materials Encyclopedia, ed. J. C. Salamone, pp. 1009–1013 Boca Raton: CRC.

    Google Scholar 

  • Myoga, H., Asano, H., Nomura, Y., and Yoshida, H. 1991. Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method. Water Sci. Technol. 23:1117–1124.

    CAS  Google Scholar 

  • Nussinovitch, A. 1994. Resemblance of immobilized Trichoderma viride fungal spores in an alginate matrix to a composite material. Biotechnol. Prog. 10:551–554.

    Article  CAS  Google Scholar 

  • Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.

    Book  Google Scholar 

  • Nussinovitch, A., Kopelman, I. J., and Mizrahi, S. 1990. Effect of hydrocolloid and mineral content on the mechanical properties of gels. Food Hydrocolloids 4:257–265.

    Article  CAS  Google Scholar 

  • Oh, J. K., Drumright, R., Siegwart, D. J., and Matyjaszewski, K. 2008. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33:448–477.

    Article  CAS  Google Scholar 

  • Osada, Y., and Kajiwara, K. 2001. Gels. In Handbook vol. 4. Environment: Earth Environment & Gels, pp. 75–154. San Diego and San Francisco: Academic.

    Book  Google Scholar 

  • Ott, E. 1946. High polymers. In Cellulose and Cellulose Derivatives. Vol. 5 in the Series: High Polymers. New York: Interscience Publishers.

    Google Scholar 

  • Palmieri, G., Giardina, P., Desiderio, B., Marzullo, L., Giamberini, M., and Sannita, G. 1994. A new enzyme immobilization procedure using copper alginate gel: application to fungal phenol oxidase. Enzyme Microb. Technol. 16:151–158.

    Article  CAS  Google Scholar 

  • Parascandola, P., and Scardi, V. 1981. Gelatin-entrapped whole-cell invertase. Biotechnol. Lett. 3:369–374.

    Article  CAS  Google Scholar 

  • Passos, F. M. L., and Swaisgood, H. E. 1993. Development of a spiral mesh bioreactor with immobilized lactococci for continuous inoculation and acidification of milk. J. Dairy Sci. 76:2856–2867.

    Article  CAS  Google Scholar 

  • Passos, F. M. L., Klaenhammer, T. R., and Swaisgood, H. E. 1994. Response to phage infection of immobilized lactococci during continuous acidification and inoculation of skim milk. J. Dairy Res. 61:537–544.

    Article  CAS  Google Scholar 

  • Phillips, G. O., and Williams, P. A. 2000. Handbook of Hydrocolloids. Cambridge, UK: CRC Woodhead Publishing Limited.

    Google Scholar 

  • Qu, X., Wirsen, A., and Albertsson, A. C. 1999a. Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 74:3193–3202.

    Article  CAS  Google Scholar 

  • Qu, X., Wirsen, A., and Albertsson, A. C. 1999b. Structural change and swelling mechanism of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 74:3186–3192.

    Article  CAS  Google Scholar 

  • Rehg, T., Dorger, C., and Chau, P. C. 1986. Application of an atomizer in producing small alginate gel beads for cell immobilization. Biotechnol. Lett. 8:111–114.

    Article  Google Scholar 

  • Rochefort , W. E., Rehg, T., and Chau, P. C. 1986. Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol. Lett. 8:115–120.

    Article  CAS  Google Scholar 

  • Royer, G., Livernoche, D., Desrocher, M., Jurasek, L., Rouleau, D., and Mayer, R. C. 1983. Decolorization of kraft mill effluent: kinetics of a continuous process using immobilized Coriolus versicolor. Biotechnol. Lett. 5:321–326.

    CAS  Google Scholar 

  • Sakimae, A., and Onishi, H. 1981. Preparation of immobilized enzymes of micro-organisms. United States Patent #4,276,381.

    Google Scholar 

  • Sanroman, A., Chamy, R., Nunez, M. J., and Lema, J. M. 1994. Alcoholic fermentation of xylose by immobilized Pichia stipitis in fixed-bed pulsed bioreactor. Enzyme Microb. Technol. 16: 72–79.

    Article  CAS  Google Scholar 

  • Sarkar, J. M., and Mayaudon, J. 1983. Alanine synthesis by immobilized Corynebacterium dismutans cells. Biotechnol. Lett. 5:201–206.

    Article  CAS  Google Scholar 

  • Segawa, S. 1965. Genshoku Nippon Kaiso Zukan (Natural-Color Picture Book of Marine Seaweeds). Tokyo: Hoikusha.

    Google Scholar 

  • Shahidi, F., and Synowiecki, J. 1991. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39:1527–1532.

    Article  CAS  Google Scholar 

  • Shindo, S., and Kamimura, M. 1990. Immobilization of yeast with hollow PVA gel beads. J. Ferment. Bioeng. 70:232–234.

    Article  CAS  Google Scholar 

  • SivaRaman, H., Rao, B. S., Pundle, A. V., and SivaRaman, C. 1982. Continuous ethanol production by yeast cells immobilized in open pore gelatin matrix. Biotechnol. Lett. 4:359–364.

    Article  CAS  Google Scholar 

  • Stasnley, N. F. 1990. Carrageenans. In Food Gels, ed. P. Harris, pp. 79–119. London: Elsevier Applied Science.

    Chapter  Google Scholar 

  • Steentoft, M., and Farham, W. F. 1997. Northern distribution boundaries and thermal requirements of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Atlantic Europe and Scandinavia. Nord. J. Bot. 5:87–93.

    Article  Google Scholar 

  • Stelzer, G. I., and Klug, E. D. 1980. Carboxymethylcellulose. In Handbook of Water-soluble Gums and Resins, ed. R. L. Davidson, chapt. 4, pp. 1–28. New York: McGraw-Hill.

    Google Scholar 

  • Stenroos, S. L., Linko, Y. Y., and Linko, P. 1982. Production of L-lactic acid with immobilized Lactobacillus delbrueckii. Biotechnol. Lett. 4:159–164.

    Article  CAS  Google Scholar 

  • Stocklein, W., Eisgruber, A., and Schmidt, H. L. 1983. Conversion of L-phenylalanine to L-tyrosine by immobilized bacteria. Biotechnol. Lett. 5:703–708.

    Article  Google Scholar 

  • Sugiura, S., Nakajima, M., Ushijima, H., Yamamoto, K., and Seki, M. 2001. Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J. Chem. Eng. Jpn. 34:757–765.

    Article  CAS  Google Scholar 

  • Sun, A. M. 1994. Microencapsulation as bioartificial organs: allografts and xenografts. In Pancreatic Islet Transplantation, vol. III: Immunoisolation of Pancreatic Islets, ed. R. P. Lanza, and W. L. Chick, pp. 45–58. Austin, TX: R.G. Landes.

    Google Scholar 

  • Suzuki, S., and Karube, I. 1979. Microbial electrodes sensors for cephalosporins and glucose. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkatsubramanian, pp. 221–236. Washington, DC: American Chemical Society.

    Google Scholar 

  • Tampion, J., and Tampion, M. D. 1987. Immobilized Cells: Principles and Applications. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Tramper, J., Van Der Plas, H. C., Van Der Kaaden, A., Muller, F., and Middlehoven, W. J. 1979. Xanthine oxidase activity of Arthrobacter X-4-cells immobilized in glutaraldehyde-crosslinked gelatin. Biotechnol. Lett. 1:397–402.

    Article  CAS  Google Scholar 

  • Tsai, S. W., Jeng, M. J., Tsay, R. Y., and Wang, Y. J. 1998. Gel beads composed of collagen reconstituted in alginate. Biotechnol. Tech. 12:21–23.

    Article  CAS  Google Scholar 

  • Vandelli, M. A., Rivasi, F., Guerra, P., Forni, F., and Arletti, R. 2001. Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int. J. Pharm. 215:175–184.

    Article  CAS  Google Scholar 

  • Vieth, W. R., and Venkastsubramanian, K. 1979. Immobilized microbial cells in complex biocatalysis. In Immobilized Microbial Cells, ACS Symposium Series 106, ed. K. Venkastubramanian, pp. 1–11. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Vorlop, K. D., and Klein, J. 1981. Formation of spherical chitosan biocatalysts by iontropic gelation. Biotechnol. Lett. 3:9–14.

    Article  CAS  Google Scholar 

  • Vorlop, K. D., Muscat, A., and Beyersdorf, J. 1992. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity. Biotechnol. Tech. 6:483–488.

    Article  CAS  Google Scholar 

  • Wada, M., Kato, J., and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 10:275–287.

    Article  CAS  Google Scholar 

  • Wang, H. Y., and Hettwer, D. J. 1982. Cell immobilization in κ-carrageenan with tricalcium phosphate. Biotechnol. Bioeng. 24:1827–1838.

    Article  CAS  Google Scholar 

  • Wang, H. Y., Lee, S. S., Takach, Y., and Chethon, L. 1982. Maximizing microbial cell loading in immobilized cell systems. In Biotechnology and Bioengineering Symposium 12, ed. E. L. Gaden Jr., pp. 139–146. New York: John Wiley.

    Google Scholar 

  • Ward, K. Jr., and Seib, P. A. 1970. Cellulose, lichenan and chitin. In The Carbohydrates—Chemistry and Biochemistry, 2nd edn.,Vol. 2A, ed. W. Pigman, D. Horton, and A. Herp, pp. 413–445. New York: Academic.

    Google Scholar 

  • Wheatley, M. A., and Phillips, C. R. 1983. The influence of internal and external diffusional limitations on the observed kinetics of immobilized whole bacterial cells with cell-associated β-glucosidase activity. Biotechnol. Lett. 5:79–84.

    Article  CAS  Google Scholar 

  • Whistler, R. L. 1973. Industrial Gums, 2nd edn. New York: Academic.

    Google Scholar 

  • Whistler, R. L., and Kirby, K. W. 1959. Composition of alginic acid of Macrocystis pyrifera. Hopper-Seyler’s Z. Physiol. Chem. 314:46.

    Article  CAS  Google Scholar 

  • Whistler, R. L., and Zysk, J. R. 1978. Carbohydrates. In Encyclopedia of Chemical Technology, 3rd edn., vol. 4, ed. M. Grayson and E. Eckroth, pp. 535–555. New York: John Wiley & Sons.

    Google Scholar 

  • Wikstrom, P., Szwajcer, E., Brodelius, P., Nilsson, K., and Mosbach, K. 1982. Formation of α-keto acids from amino acids using immobilized bacteria and algae. Biotechnol. Lett. 4:153–158.

    Article  Google Scholar 

  • Wilke, B., Wilke, T., and Vorlop, K. D. 1994. Poly(carbamoylsulphonate) as a matrix for whole cell immobilization-biological characterization. Biotechnol. Tech. 8:623–626.

    Google Scholar 

  • Wu, K. Y. A., and Wisecarver, K. D. 1992. Cell immobilization using PVA cross-linked with boric acid. Biotechnol. Bioeng. 39:447–449.

    Article  CAS  Google Scholar 

  • Yanagawa, T. 1942. Kanten. pp. 1–352. Tokyo: Kogyo-tosho Co.

    Google Scholar 

  • Yannas, I. V., and Kirk, J. F. 1984. Method for the preparation of collagen-glycosaminoglycan composite materials. United States Patent #4,448,718.

    Google Scholar 

  • Zecher, D., and Van Coillie, R. 1992. Cellulose derivatives. In Thickening and Gelling Agents for Food, ed. A. Immson, pp. 40–65. Glasgow: Blackie Academic & Professional, an imprint of Chapman & Hall.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A. (2010). Bead Formation, Strengthening, and Modification. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6618-6_2

Download citation

Publish with us

Policies and ethics