Skip to main content

Physical Properties of Beads and Their Estimation

  • Chapter
  • First Online:

Abstract

In Chapter 1, the criteria used to describe the shape and size of beads are explained. In particular, sections on roundness, sphericity, measurement of axial dimensions, and resemblance to geometric bodies are included. A special section is devoted to the methods used to estimate average projected area, volume, and density, including specific gravity balance and pycnometric methods. Other sections are devoted to bead surface area and specific surface in porous media, i.e., dried beads. Also covered are image processing and its utilization for hydrocolloid beads. Finally, the chapter discusses the structure of hydrocolloid beads, their density, and their porosity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. 2004. Image processing with image. J. Biophotonics Int. 11:36–42.

    Google Scholar 

  • Agnihotri, S. A., Jawalkar, S. S., and Aminabhavi, T. M. 2004. Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. Eur. J. Pharm. Biopharm. 63:249–261.

    Article  Google Scholar 

  • Agrawal, A. M., Howard, M. A., and Neau, S. H. 2004. Extruded and spheronized beads containing no microcrystalline cellulose: influence of formulation and process variables. Pharm. Dev. Technol. 9:197–217.

    Article  CAS  Google Scholar 

  • Bai, Y. X., and Li, Y. F. 2006. Preparation and characterization of crosslinked porous cellulose beads. Carbohyd. Polym. 64:402–407.

    Article  CAS  Google Scholar 

  • Bajpai, S. K., and Sharma, S. 2004. Investigation of swelling/degradation behavior of alginate beads cross-linked with Ca2+ and Ba2+ ions. React. Funct. Polym. 59:129–140.

    Article  CAS  Google Scholar 

  • Baldyga, J., Bourne, J. R., Pacek, A. W., Amanullah, A., and Nienow, A. W. 2000. Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency. Chem. Eng. Sci. 56:3377–3387.

    Google Scholar 

  • Bégin, F., Castaigne, F., and Goulet, J. 1991. Production of alginate beads by a rotative atomizer. Biotechnol. Tech. 5:459–464.

    Article  Google Scholar 

  • Brandenberger, H., Nüssli, D., Piëch, V., and Widmer, F. 1997. Monodisperse particle production: a new method to prevent drop coalescence using electrostatic forces. J. Electrostat. 45:227–238.

    Article  Google Scholar 

  • Brandenberger, H., and Widmer, F. 1998. A new multinozzle encapsulation immobilisation system to produce uniform beads of alginate. J. Biotechnol. 63:73–80.

    Article  CAS  Google Scholar 

  • Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., and Vunja, G. 1994. Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J. 40:1026–1031.

    Article  Google Scholar 

  • Buitelaar, R. M., Hulst, A. C., and Tamper, J. 1988. Immobilization of biocatalysts in thermogels using the resonance nozzle for rapid drop formation and organic solvents for gelling. Biotechnol. Technol. 2:109–114.

    Article  CAS  Google Scholar 

  • Buthe, A., Hartmeier, W., and Ansorge-Schumacher, A. B. 2004. Novel solvent-based method for preparation of alginate beads with improved roundness and predictable size. J. Microencapsul. 21:865–876.

    Article  CAS  Google Scholar 

  • Cantarella, M., Cantarella, L., and Alfani, F. 1988. Entrapping of acid phosphatase in polyhydroxyethyl methacrylate matrices. Preparation and kinetic properties. Br. Polym. J. 20:477–485.

    Article  CAS  Google Scholar 

  • Curray, J. K. 1951. Analysis of sphericity and roundness of quartz grains. M.Sc. thesis in mineralogy. The Pennsylvania State University, University Park, PA.

    Google Scholar 

  • Das, S., and Ng, K.-Y. 2010. Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics. J. Pharm. Sci. 99:840–860.

    Article  CAS  Google Scholar 

  • Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill.

    Google Scholar 

  • Ghosal, S. K., Talukdar, P., and Pal, T. K. 1993. Standardization of a newly designed vibrating capillary apparatus for the preparation of microcapsulses. Chem. Eng. Technol. 16: 395–398.

    Article  CAS  Google Scholar 

  • Goulden, C. H. 1952. Methods of Statistical Analysis. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Green, K. D., Gill, I. S., Khan, J. A., and Vulfson, E. N. 1996. Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents. Biotechnol. Bioeng. 49:535–543.

    Article  CAS  Google Scholar 

  • Griffiths, J. C., and Smith, C. M. 1964. Relationship between volume and axes of some quartzite pebbles from the olean conglomerate Rock City, New York. Am. J. Sci. 262:497–512.

    Article  Google Scholar 

  • Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J., and Lepage, Y. 1994. Studies on small (less than 300 ?m) microcapsules. II. Parameters governing the production of alginate beads by high-voltage electrostatic pulses. Cell Transplant. 3:365–372.

    CAS  Google Scholar 

  • Houston, R. K. 1957. New criterion of size for agricultural products. Agric. Eng. 39:856–858.

    Google Scholar 

  • Karathanos, V. T., and Saravacos, G. D. 1993. Porosity and pore size distribution of starch materials. J. Food Eng. 18:259–279.

    Article  Google Scholar 

  • Kaye, B. 1993. Chaos and Complexity: Discovering the Surprising Patterns of Science and Technology. Weinheim, New York: VCH.

    Google Scholar 

  • Keppeler, S., Ellis, A., and Jacquier, J. C. 2009. Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 78:973–977.

    Article  CAS  Google Scholar 

  • Kim, S. N., Moritugu, M., Ogata, T., Nonaka, T., and Kurihara, S. 2005. Synthesis and characterization of photochromic liquid crystalline polymer beads. Mol. Cryst. Liq. Cryst. 443:127–135.

    Article  CAS  Google Scholar 

  • Klein, J., Stock, J., and Vorlop, K. D. 1983. Pore size and properties of spherical Ca-alginate biocatalysts. Eur. J. Appl. Microbiol. Biotechnol. 18:86–91.

    Article  CAS  Google Scholar 

  • Kotha, A., Rajan, C. R., Ponrathnam, S., and Shewale, J. G. 1996a. Beaded reactive polymers .1. Effect of synthesis variables on pore size and its distribution in beaded glycidyl methacrylate divinyl benzene copolymers. React. Funct. Polym. 28:227–233.

    Article  CAS  Google Scholar 

  • Kotha, A., Rajan, C. R., Ponrathnam, S., Kumar, K. K., and Shewale, J. G. 1996b. Beaded reactive polymers. 2. Immobilisation of penicillin G acylase on glycidyl methacrylate divinyl benzene copolymers of differing pore size and its distribution. React. Funct. Polym. 28:235–242.

    Article  CAS  Google Scholar 

  • Kotha, A., Raman, R. C., Ponrathnam, S., Kumar, K. K., and Shewale, J. G. 1998. Beaded reactive polymers. 3. Effect of triacrylates as crosslinkers on the physical properties of glycidyl methacrylate copolymers and immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 74:191–203.

    Article  CAS  Google Scholar 

  • Lai, F., Loy, G., Manconi, M., Manca, M. L., and Fadda, A. M. 2007. Artemisia arborescens L. essential oil loaded beads: preparation and characterization. AAPS PharmaSciTech 8:67.

    Google Scholar 

  • Levee, M. G., Lee, G. M., Paek, S. H., and Palsson, B. O. 1994. Microencapsulated human bone-marrow cultures: a potential culture system for the clonal outgrowth of hematopoietic progenitor cells. Biotechnol. Bioeng. 43:734–739.

    Article  CAS  Google Scholar 

  • Liu, X. D., Yu, W. Y., Zhang, Y., Xue, W. M., Tu, W. T., Xiong, Y., Ma, X. J., Chen, Y., and Yuan, Q. 2002. Characterization of structure and diffusion behavior of Ca-alginate beads prepared with external or internal calcium sources. J. Microencapsul. 19:775–782.

    Article  CAS  Google Scholar 

  • Lukas, J., Bleha, M., Svec, F., and Kalal, J. 1981. Reactive polymers. XXXVII. An investigation of the internal structure of polymeric sorbents based on poly(2,3epoxypropylmethacrylate-co-ethylene dimethacrylate). Angew. Makromol. Chem. 95:129–137.

    Article  CAS  Google Scholar 

  • Mohsenin, N. N. 1970. Physical Properties of Food and Agricultural Materials. New York: Gordon and Breach.

    Google Scholar 

  • Mu, Y., Lyddiatt, A., and Pacek, A. W. 2005. Manufacture by water/oil emulsification of porous agarose beads: effect of processing conditions on mean particle size, size distribution and mechanical properties. Chem. Eng. Process. 44:1157–1166.

    Article  CAS  Google Scholar 

  • Musser, G. L., and Burger, W. F. 1997. In Mathematics for Elementary Teachers, a Contemporary Approach, 4th ed., pp. 507–641. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Ni, C. H., Wang, Z., and Zhu, X. X. 2004. Preparation and characterization of thermosensitive beads with macroporous structures. J. Appl. Polym. Sci. 91:1792–1797.

    Article  CAS  Google Scholar 

  • Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.

    Book  Google Scholar 

  • Nussinovitch, A., and Gershon, Z. 1996. A rapid method for determining sphericity of hydrocolloid beads. Food Hydrocolloids 10:263–266.

    Article  CAS  Google Scholar 

  • O’Connor, S. M., and Gehrke, S. H. 1997. Synthesis and characterization of thermally-responsive hydroxypropyl methylcellulose gel beads. J. Appl. Polym. Sci. 66:1279–1290.

    Article  Google Scholar 

  • Ogbonna, J. C., Matsumura, M., and Kataoka, H. 1991. Effective oxygenation of immobilized cells through reduction in bead diameter: a review. Process Biochem. 26:109–121.

    Article  CAS  Google Scholar 

  • Okushima, S., Nisisako, T., Torii, T., and Higuchi, T. 2004. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices Langmuir 20:9905.

    CAS  Google Scholar 

  • Ostberg, T., Lund, E. M., and Graffner, C. 1994. Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media. Int. J. Pharm. 112:241–248.

    Article  CAS  Google Scholar 

  • Perry, R. H., and Chilton, C. H. 1973. Chemical Engineer’s Handbook. New York: McGraw-Hill.

    Google Scholar 

  • Phillips, G. O., and Williams, P. A. 2000. Handbook of Hydrocolloids. Cambridge, UK: CRC Woodhead Publishing Limited.

    Google Scholar 

  • Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., and Goosen, M. F. A. 1994. A parallel-plate electrostatic droplet generator: parameters affecting microbead size. Appl. Microbiol. Biotechnol. 42:251–255.

    Article  CAS  Google Scholar 

  • Poncelet, D., Leung, R., Centomo, L., and Neufeld, R. J. 1993. Microencapsulation of silicone oils within polyamide polyethylenimine membranes as oxygen carriers for bioreactor oxygenation. J. Chem. Technol. Biotechnol. 57:253–263.

    Article  CAS  Google Scholar 

  • Prüsse, U., Fox, B., Kirchhof, M., Bruske, F., Breford, J., and Vorlop, K. D. 1998. New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21:29–33.

    Article  Google Scholar 

  • Quenouille, M. H. 1952. Associated Measurements. London: Butterwort-Sprinter, Ltd.

    Google Scholar 

  • Rayleigh, F. R. S. 1879. On the capillary phenomena of jets. Proc. Lond. Math. Soc. 10:4–13.

    Article  Google Scholar 

  • Romo, S., and Perez-Martinez, C. 1997. The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata (Cyanobacteria) in the laboratory. J. Phycol. 33:1073–1076.

    Article  Google Scholar 

  • Sahin, S. S., and Sumnu, S. G. 2006. Physical Properties of Foods. New York: Springer.

    Google Scholar 

  • Sankalia, M. G., Mashru, R. C., Sankalia, J. M., and Sutariya V. B. 2006a. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel reads for stability improvement using Doehlert shell design. J. Pharm. Sci. 95:1994–2013.

    Article  CAS  Google Scholar 

  • Sankalia, M. G., Mashru, R. C., Sankalia, J. M., and Sutariya, V. B. 2006b. Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int. J. Pharm. 312:1–14.

    Article  CAS  Google Scholar 

  • Seifert, D. B., and Phillips, J. A. 1997. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Progr. 13:562–568.

    Article  CAS  Google Scholar 

  • Serp, D., Cantana, E., Heinzen, C., von Stockar, U., and Marison, I. W. 2000. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70:41–53.

    Article  CAS  Google Scholar 

  • Setoh, M., Hiraoka, K., Nakamura, A. M., Hirata, N., and Arakawa, M. 2007. Collisional disruption of porous sintered glass beads at low impact velocities. Adv. Space Res. 40:252–257.

    Article  Google Scholar 

  • Shafiur, R. 1995. In Food Properties Handbook, pp. 179–224. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Siemann, M., Müller-Hurtig, R., and Wagner, F. 1990. Characterization of the rotating nozzle-ring technique for the production of small spherical biocatalysts. Physiology of immobilized cells. In Proc. Int. Symp of Physiology of immobilized cells / edited by J.A.M. de Bont et al., pp. 275–282. Wageningen, The Netherlands: Elsevier Science.

    Google Scholar 

  • Sipahigil, O., and Dortunc, B. 2001. Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int. J. Pharm. 228:119–128.

    Article  CAS  Google Scholar 

  • Smidsrod, O., and Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8:71–78.

    Article  CAS  Google Scholar 

  • Sughi, H., Esumi, K., Honda, H., and Oda, H. 1995. Characterization of carbonaceous gel beads prepared in presence of polymer using water-in-oil emulsion. Carbon 33:821–825.

    Article  Google Scholar 

  • Takeuchi, S., Garstecki, P., Weibel, D. B., and Whitesides, G. M. 2005. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17:1067.

    Article  CAS  Google Scholar 

  • Tan, W. H., and Takeuchi, S. 2007. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19:2696.

    Article  CAS  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., Yamamoto, K., Takata, I., Nishida, Y., and Chibata, I. 1979. Immobilization of enzymes and microbial-cells using carrageenan as matrix. Biotechnol. Bioeng. 21:1697–1709.

    Article  CAS  Google Scholar 

  • Walsh, P. K., Isdell, F. V., Noone, S. M., Odonovan, M. G., and Malone, D. M. 1996. Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: effect of physical and chemical properties of gels. Enzyme Microb. Tech. 18:366–372.

    Article  CAS  Google Scholar 

  • Wang, D. M., Hao, G., Shi, Q. H., and Sun, Y. 2007. Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography. J. Chromatogr. A 1146:32–40.

    Article  CAS  Google Scholar 

  • Weber, C. 1931. Zum Zerfall eines Flu¨ssigkeitstahles. Z. Angew. Math Mech. 11:136–155.

    Article  Google Scholar 

  • Weisstein, E. W. 2003. CRC Concise Encyclopedia of Mathematics, 2nd ed. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Wolf, B., and Finke, I. 1992. The use of bead celluloses as carrier for controlled liberation of drugs. 5. Binding of benzocanie as a model-drug to dialdehyde bead cellulose and its in vitro liberation. Pharmazie 47:121–125.

    CAS  Google Scholar 

  • Wong, T. W., and Nurjaya, S. 2008. Drug release property of chitosan-pectinate beads and its changes under the influence of microwave. Eur. J. Pharm. Biopharm. 69:176–188.

    Article  CAS  Google Scholar 

  • Woo, J. W., Roh, H. J., Park, H. D., Ji, C. I., Lee, Y. B., and Kim, S. B. 2007. Sphericity optimization of calcium alginate gel beads and the effects of processing conditions on their physical properties. Food Sci. Biotechnol. 16:715–721.

    Google Scholar 

  • Yilmaz, E., and Bengisu, M. 2003. Preparation and characterization of physical gels and beads from chitin solutions. Carbohyd. Polym. 54:479–488.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, W. Q., Wang, Y. P., Zeng, J. Y., Zhang, S. T., Lei, Z. Q., and Zhao, X. T. 2007. Preparation and characterization of montmorillonnite/carrageen/guar gum gel spherical beads. Polym. Polym. Compos. 15:131–136.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A. (2010). Physical Properties of Beads and Their Estimation. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6618-6_1

Download citation

Publish with us

Policies and ethics