Physical Properties of Beads and Their Estimation

  • Amos Nussinovitch


In Chapter 1, the criteria used to describe the shape and size of beads are explained. In particular, sections on roundness, sphericity, measurement of axial dimensions, and resemblance to geometric bodies are included. A special section is devoted to the methods used to estimate average projected area, volume, and density, including specific gravity balance and pycnometric methods. Other sections are devoted to bead surface area and specific surface in porous media, i.e., dried beads. Also covered are image processing and its utilization for hydrocolloid beads. Finally, the chapter discusses the structure of hydrocolloid beads, their density, and their porosity.


Convex Body Alginate Bead Calcium Alginate Suspension Polymerization Bead Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. 2004. Image processing with image. J. Biophotonics Int. 11:36–42.Google Scholar
  2. Agnihotri, S. A., Jawalkar, S. S., and Aminabhavi, T. M. 2004. Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. Eur. J. Pharm. Biopharm. 63:249–261.CrossRefGoogle Scholar
  3. Agrawal, A. M., Howard, M. A., and Neau, S. H. 2004. Extruded and spheronized beads containing no microcrystalline cellulose: influence of formulation and process variables. Pharm. Dev. Technol. 9:197–217.CrossRefGoogle Scholar
  4. Bai, Y. X., and Li, Y. F. 2006. Preparation and characterization of crosslinked porous cellulose beads. Carbohyd. Polym. 64:402–407.CrossRefGoogle Scholar
  5. Bajpai, S. K., and Sharma, S. 2004. Investigation of swelling/degradation behavior of alginate beads cross-linked with Ca2+ and Ba2+ ions. React. Funct. Polym. 59:129–140.CrossRefGoogle Scholar
  6. Baldyga, J., Bourne, J. R., Pacek, A. W., Amanullah, A., and Nienow, A. W. 2000. Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency. Chem. Eng. Sci. 56:3377–3387.Google Scholar
  7. Bégin, F., Castaigne, F., and Goulet, J. 1991. Production of alginate beads by a rotative atomizer. Biotechnol. Tech. 5:459–464.CrossRefGoogle Scholar
  8. Brandenberger, H., Nüssli, D., Piëch, V., and Widmer, F. 1997. Monodisperse particle production: a new method to prevent drop coalescence using electrostatic forces. J. Electrostat. 45:227–238.CrossRefGoogle Scholar
  9. Brandenberger, H., and Widmer, F. 1998. A new multinozzle encapsulation immobilisation system to produce uniform beads of alginate. J. Biotechnol. 63:73–80.CrossRefGoogle Scholar
  10. Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., and Vunja, G. 1994. Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J. 40:1026–1031.CrossRefGoogle Scholar
  11. Buitelaar, R. M., Hulst, A. C., and Tamper, J. 1988. Immobilization of biocatalysts in thermogels using the resonance nozzle for rapid drop formation and organic solvents for gelling. Biotechnol. Technol. 2:109–114.CrossRefGoogle Scholar
  12. Buthe, A., Hartmeier, W., and Ansorge-Schumacher, A. B. 2004. Novel solvent-based method for preparation of alginate beads with improved roundness and predictable size. J. Microencapsul. 21:865–876.CrossRefGoogle Scholar
  13. Cantarella, M., Cantarella, L., and Alfani, F. 1988. Entrapping of acid phosphatase in polyhydroxyethyl methacrylate matrices. Preparation and kinetic properties. Br. Polym. J. 20:477–485.CrossRefGoogle Scholar
  14. Curray, J. K. 1951. Analysis of sphericity and roundness of quartz grains. M.Sc. thesis in mineralogy. The Pennsylvania State University, University Park, PA.Google Scholar
  15. Das, S., and Ng, K.-Y. 2010. Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics. J. Pharm. Sci. 99:840–860.CrossRefGoogle Scholar
  16. Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill.Google Scholar
  17. Ghosal, S. K., Talukdar, P., and Pal, T. K. 1993. Standardization of a newly designed vibrating capillary apparatus for the preparation of microcapsulses. Chem. Eng. Technol. 16: 395–398.CrossRefGoogle Scholar
  18. Goulden, C. H. 1952. Methods of Statistical Analysis. New York: John Wiley and Sons, Inc.Google Scholar
  19. Green, K. D., Gill, I. S., Khan, J. A., and Vulfson, E. N. 1996. Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents. Biotechnol. Bioeng. 49:535–543.CrossRefGoogle Scholar
  20. Griffiths, J. C., and Smith, C. M. 1964. Relationship between volume and axes of some quartzite pebbles from the olean conglomerate Rock City, New York. Am. J. Sci. 262:497–512.CrossRefGoogle Scholar
  21. Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J., and Lepage, Y. 1994. Studies on small (less than 300 ?m) microcapsules. II. Parameters governing the production of alginate beads by high-voltage electrostatic pulses. Cell Transplant. 3:365–372.Google Scholar
  22. Houston, R. K. 1957. New criterion of size for agricultural products. Agric. Eng. 39:856–858.Google Scholar
  23. Karathanos, V. T., and Saravacos, G. D. 1993. Porosity and pore size distribution of starch materials. J. Food Eng. 18:259–279.CrossRefGoogle Scholar
  24. Kaye, B. 1993. Chaos and Complexity: Discovering the Surprising Patterns of Science and Technology. Weinheim, New York: VCH.Google Scholar
  25. Keppeler, S., Ellis, A., and Jacquier, J. C. 2009. Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 78:973–977.CrossRefGoogle Scholar
  26. Kim, S. N., Moritugu, M., Ogata, T., Nonaka, T., and Kurihara, S. 2005. Synthesis and characterization of photochromic liquid crystalline polymer beads. Mol. Cryst. Liq. Cryst. 443:127–135.CrossRefGoogle Scholar
  27. Klein, J., Stock, J., and Vorlop, K. D. 1983. Pore size and properties of spherical Ca-alginate biocatalysts. Eur. J. Appl. Microbiol. Biotechnol. 18:86–91.CrossRefGoogle Scholar
  28. Kotha, A., Rajan, C. R., Ponrathnam, S., and Shewale, J. G. 1996a. Beaded reactive polymers .1. Effect of synthesis variables on pore size and its distribution in beaded glycidyl methacrylate divinyl benzene copolymers. React. Funct. Polym. 28:227–233.CrossRefGoogle Scholar
  29. Kotha, A., Rajan, C. R., Ponrathnam, S., Kumar, K. K., and Shewale, J. G. 1996b. Beaded reactive polymers. 2. Immobilisation of penicillin G acylase on glycidyl methacrylate divinyl benzene copolymers of differing pore size and its distribution. React. Funct. Polym. 28:235–242.CrossRefGoogle Scholar
  30. Kotha, A., Raman, R. C., Ponrathnam, S., Kumar, K. K., and Shewale, J. G. 1998. Beaded reactive polymers. 3. Effect of triacrylates as crosslinkers on the physical properties of glycidyl methacrylate copolymers and immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 74:191–203.CrossRefGoogle Scholar
  31. Lai, F., Loy, G., Manconi, M., Manca, M. L., and Fadda, A. M. 2007. Artemisia arborescens L. essential oil loaded beads: preparation and characterization. AAPS PharmaSciTech 8:67.Google Scholar
  32. Levee, M. G., Lee, G. M., Paek, S. H., and Palsson, B. O. 1994. Microencapsulated human bone-marrow cultures: a potential culture system for the clonal outgrowth of hematopoietic progenitor cells. Biotechnol. Bioeng. 43:734–739.CrossRefGoogle Scholar
  33. Liu, X. D., Yu, W. Y., Zhang, Y., Xue, W. M., Tu, W. T., Xiong, Y., Ma, X. J., Chen, Y., and Yuan, Q. 2002. Characterization of structure and diffusion behavior of Ca-alginate beads prepared with external or internal calcium sources. J. Microencapsul. 19:775–782.CrossRefGoogle Scholar
  34. Lukas, J., Bleha, M., Svec, F., and Kalal, J. 1981. Reactive polymers. XXXVII. An investigation of the internal structure of polymeric sorbents based on poly(2,3epoxypropylmethacrylate-co-ethylene dimethacrylate). Angew. Makromol. Chem. 95:129–137.CrossRefGoogle Scholar
  35. Mohsenin, N. N. 1970. Physical Properties of Food and Agricultural Materials. New York: Gordon and Breach.Google Scholar
  36. Mu, Y., Lyddiatt, A., and Pacek, A. W. 2005. Manufacture by water/oil emulsification of porous agarose beads: effect of processing conditions on mean particle size, size distribution and mechanical properties. Chem. Eng. Process. 44:1157–1166.CrossRefGoogle Scholar
  37. Musser, G. L., and Burger, W. F. 1997. In Mathematics for Elementary Teachers, a Contemporary Approach, 4th ed., pp. 507–641. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  38. Ni, C. H., Wang, Z., and Zhu, X. X. 2004. Preparation and characterization of thermosensitive beads with macroporous structures. J. Appl. Polym. Sci. 91:1792–1797.CrossRefGoogle Scholar
  39. Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.CrossRefGoogle Scholar
  40. Nussinovitch, A., and Gershon, Z. 1996. A rapid method for determining sphericity of hydrocolloid beads. Food Hydrocolloids 10:263–266.CrossRefGoogle Scholar
  41. O’Connor, S. M., and Gehrke, S. H. 1997. Synthesis and characterization of thermally-responsive hydroxypropyl methylcellulose gel beads. J. Appl. Polym. Sci. 66:1279–1290.CrossRefGoogle Scholar
  42. Ogbonna, J. C., Matsumura, M., and Kataoka, H. 1991. Effective oxygenation of immobilized cells through reduction in bead diameter: a review. Process Biochem. 26:109–121.CrossRefGoogle Scholar
  43. Okushima, S., Nisisako, T., Torii, T., and Higuchi, T. 2004. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices Langmuir 20:9905.Google Scholar
  44. Ostberg, T., Lund, E. M., and Graffner, C. 1994. Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media. Int. J. Pharm. 112:241–248.CrossRefGoogle Scholar
  45. Perry, R. H., and Chilton, C. H. 1973. Chemical Engineer’s Handbook. New York: McGraw-Hill.Google Scholar
  46. Phillips, G. O., and Williams, P. A. 2000. Handbook of Hydrocolloids. Cambridge, UK: CRC Woodhead Publishing Limited.Google Scholar
  47. Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., and Goosen, M. F. A. 1994. A parallel-plate electrostatic droplet generator: parameters affecting microbead size. Appl. Microbiol. Biotechnol. 42:251–255.CrossRefGoogle Scholar
  48. Poncelet, D., Leung, R., Centomo, L., and Neufeld, R. J. 1993. Microencapsulation of silicone oils within polyamide polyethylenimine membranes as oxygen carriers for bioreactor oxygenation. J. Chem. Technol. Biotechnol. 57:253–263.CrossRefGoogle Scholar
  49. Prüsse, U., Fox, B., Kirchhof, M., Bruske, F., Breford, J., and Vorlop, K. D. 1998. New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21:29–33.CrossRefGoogle Scholar
  50. Quenouille, M. H. 1952. Associated Measurements. London: Butterwort-Sprinter, Ltd.Google Scholar
  51. Rayleigh, F. R. S. 1879. On the capillary phenomena of jets. Proc. Lond. Math. Soc. 10:4–13.CrossRefGoogle Scholar
  52. Romo, S., and Perez-Martinez, C. 1997. The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata (Cyanobacteria) in the laboratory. J. Phycol. 33:1073–1076.CrossRefGoogle Scholar
  53. Sahin, S. S., and Sumnu, S. G. 2006. Physical Properties of Foods. New York: Springer.Google Scholar
  54. Sankalia, M. G., Mashru, R. C., Sankalia, J. M., and Sutariya V. B. 2006a. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel reads for stability improvement using Doehlert shell design. J. Pharm. Sci. 95:1994–2013.CrossRefGoogle Scholar
  55. Sankalia, M. G., Mashru, R. C., Sankalia, J. M., and Sutariya, V. B. 2006b. Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int. J. Pharm. 312:1–14.CrossRefGoogle Scholar
  56. Seifert, D. B., and Phillips, J. A. 1997. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Progr. 13:562–568.CrossRefGoogle Scholar
  57. Serp, D., Cantana, E., Heinzen, C., von Stockar, U., and Marison, I. W. 2000. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70:41–53.CrossRefGoogle Scholar
  58. Setoh, M., Hiraoka, K., Nakamura, A. M., Hirata, N., and Arakawa, M. 2007. Collisional disruption of porous sintered glass beads at low impact velocities. Adv. Space Res. 40:252–257.CrossRefGoogle Scholar
  59. Shafiur, R. 1995. In Food Properties Handbook, pp. 179–224. Boca Raton, FL: CRC Press.Google Scholar
  60. Siemann, M., Müller-Hurtig, R., and Wagner, F. 1990. Characterization of the rotating nozzle-ring technique for the production of small spherical biocatalysts. Physiology of immobilized cells. In Proc. Int. Symp of Physiology of immobilized cells / edited by J.A.M. de Bont et al., pp. 275–282. Wageningen, The Netherlands: Elsevier Science.Google Scholar
  61. Sipahigil, O., and Dortunc, B. 2001. Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int. J. Pharm. 228:119–128.CrossRefGoogle Scholar
  62. Smidsrod, O., and Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8:71–78.CrossRefGoogle Scholar
  63. Sughi, H., Esumi, K., Honda, H., and Oda, H. 1995. Characterization of carbonaceous gel beads prepared in presence of polymer using water-in-oil emulsion. Carbon 33:821–825.CrossRefGoogle Scholar
  64. Takeuchi, S., Garstecki, P., Weibel, D. B., and Whitesides, G. M. 2005. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17:1067.CrossRefGoogle Scholar
  65. Tan, W. H., and Takeuchi, S. 2007. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19:2696.CrossRefGoogle Scholar
  66. Tosa, T., Sato, T., Mori, T., Yamamoto, K., Takata, I., Nishida, Y., and Chibata, I. 1979. Immobilization of enzymes and microbial-cells using carrageenan as matrix. Biotechnol. Bioeng. 21:1697–1709.CrossRefGoogle Scholar
  67. Walsh, P. K., Isdell, F. V., Noone, S. M., Odonovan, M. G., and Malone, D. M. 1996. Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: effect of physical and chemical properties of gels. Enzyme Microb. Tech. 18:366–372.CrossRefGoogle Scholar
  68. Wang, D. M., Hao, G., Shi, Q. H., and Sun, Y. 2007. Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography. J. Chromatogr. A 1146:32–40.CrossRefGoogle Scholar
  69. Weber, C. 1931. Zum Zerfall eines Flu¨ssigkeitstahles. Z. Angew. Math Mech. 11:136–155.CrossRefGoogle Scholar
  70. Weisstein, E. W. 2003. CRC Concise Encyclopedia of Mathematics, 2nd ed. Boca Raton, FL: CRC Press.Google Scholar
  71. Wolf, B., and Finke, I. 1992. The use of bead celluloses as carrier for controlled liberation of drugs. 5. Binding of benzocanie as a model-drug to dialdehyde bead cellulose and its in vitro liberation. Pharmazie 47:121–125.Google Scholar
  72. Wong, T. W., and Nurjaya, S. 2008. Drug release property of chitosan-pectinate beads and its changes under the influence of microwave. Eur. J. Pharm. Biopharm. 69:176–188.CrossRefGoogle Scholar
  73. Woo, J. W., Roh, H. J., Park, H. D., Ji, C. I., Lee, Y. B., and Kim, S. B. 2007. Sphericity optimization of calcium alginate gel beads and the effects of processing conditions on their physical properties. Food Sci. Biotechnol. 16:715–721.Google Scholar
  74. Yilmaz, E., and Bengisu, M. 2003. Preparation and characterization of physical gels and beads from chitin solutions. Carbohyd. Polym. 54:479–488.CrossRefGoogle Scholar
  75. Zhang, J., Wang, W. Q., Wang, Y. P., Zeng, J. Y., Zhang, S. T., Lei, Z. Q., and Zhao, X. T. 2007. Preparation and characterization of montmorillonnite/carrageen/guar gum gel spherical beads. Polym. Polym. Compos. 15:131–136.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations