Collagen in Cancer

Part of the Cancer Drug Discovery and Development book series (CDD&D)


Collagen is a key structural component of the extracellular matrix (ECM), and also serves as a modular of diverse signaling pathways. Intact collagens may be upregulated in cancer to provide a rigid matrix that facilitates tumor growth. In turn, collagen catabolism by matrix metalloproteinases (MMPs) and other proteases reveals previously hidden binding sites that promote angiogenesis and tumor invasion. A variety of cell surface biomolecules (integrins, CD44, DDRs) and other ECM proteins and proteoglycans [fibronectin (FN), laminin (LNs), decorin] interact with collagen, and these interactions, along with the structural state of collagen, provide the foundation for tumorigenesis and metastasis.


Melanoma Cell Triple Helix Cryptic Site Type Xviii Collagen Collagen Binding Integrins 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the National Institutes of Health (CA98799, EB000289, and MH078948), the Robert A. Welch Foundation, and the Texas Higher Education Science and Technology Acquisition and Retention (STAR) Award (all to GBF) for support of our research on collagen and metalloproteases and the National Institutes of Health NIDCR (DE14318) COSTAR Program (to JL).


  1. Abdulhussein R, Koo DHH, Vogel WF (2008) Identification of disulfide-linked dimers of the receptor tyrosine kinase DDR1. J Biol Chem 283:12026–12033.PubMedCrossRefGoogle Scholar
  2. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110.PubMedCrossRefGoogle Scholar
  3. Agarwal G, Kovac L, Radziejewski C et al (2002) Binding of discoidin domain receptor 2 to ­collagen I: an atomic force microscopy investigation. Biochemistry 41:11091–11098.PubMedCrossRefGoogle Scholar
  4. Ahrens T, Assmann V, Fieber C et al (2001) CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol 116:93–101.PubMedCrossRefGoogle Scholar
  5. Al-Hazmi N, Thomas GJ, Speight PM et al (2007) The 120 kDa cell-binding fragment of fibronectin up-regulates migration of alpha v beta 6-expressing cells by increasing matrix metalloproteinase-2 and-9 secretion. Eur J Oral Sci 115:454–458.PubMedCrossRefGoogle Scholar
  6. Alves CS, Yakovlev S, Medved L et al (2009) Biomolecular characterization of CD44-fibrin(ogen) binding. J Biol Chem 284:1177–1189.PubMedCrossRefGoogle Scholar
  7. Alves F, Vogel W, Mossie K et al (1995) Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10:609–618.PubMedGoogle Scholar
  8. Anderegg U, Eichenberg T, Parthaune T et al (2009) ADAM10 is the constitutive functional sheddase of CD44 in human melanoma cells. J Invest Dermatol 129:1471–1482.PubMedCrossRefGoogle Scholar
  9. Asokan R, Reddy GK, Dhar SC (1993) Neoplastic association of enhanced type-V collagen production in rat fibrosarcoma. Mol Cell Biochem 120:25–32.PubMedCrossRefGoogle Scholar
  10. Autelitano DJ, Rajic A, Smith AI et al (2006) The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov Today 11:306–314.PubMedCrossRefGoogle Scholar
  11. Bao X, Kobayashi M, Hatakeyama S et al (2009) Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 106:12109–12114.PubMedCrossRefGoogle Scholar
  12. Barker KT, Martindale JE, Mitchell PJ et al (1995) Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumors. Oncogene 11:569–575.Google Scholar
  13. Barnes MJ, Knight CG, Farndale RW (1996) The use of collagen-based model peptides to investigate platelet-reactive sequences in collagen. Biopolymers (Peptide Sci) 40:383–397.CrossRefGoogle Scholar
  14. Baronas-Lowell D, Lauer-Fields JL, Borgia JA et al (2004a) Differential modulation of human melanoma cell metalloproteinase expression by α2β1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 279:43503–43513.PubMedCrossRefGoogle Scholar
  15. Baronas-Lowell D, Lauer-Fields JL, Fields GB (2004b) Induction of endothelial cell activation by a triple-helical α2β1 integrin ligand derived from type I collagen α1(I)496–507. J Biol Chem 279:952–962.PubMedCrossRefGoogle Scholar
  16. Barth L, Sinner EK, Cadamuro SA et al (2009) Homotrimeric collagen peptides as model sys­-tems for cell adhesion studies. In: Escher E, Lubell WD, Del Valle S (eds) Peptides for youth: the proceedings of the 20th American Peptide Symposium. Springer Science, New York, pp 295–296.Google Scholar
  17. Baum J, Brodsky B (1999) Folding of peptide models of collagen and misfolding in disease. Curr Opin Struct Biol 9:122–128.PubMedCrossRefGoogle Scholar
  18. Bella J, Berman HM (2000) Integrin-collagen complex: a metal-glutamate handshake. Structure 8:R121–R126.PubMedCrossRefGoogle Scholar
  19. Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol/Hematol 49:203–220.CrossRefGoogle Scholar
  20. Belotti D, Paganoni P, Manenti L et al (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63:5224–5229.PubMedGoogle Scholar
  21. Bergers G, Brekken RA, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744.PubMedCrossRefGoogle Scholar
  22. Berman A, Morozevich G, Karmansky I et al (1993) Adhesion of mouse hepatocytes to type I collagen: role of supramolecular forms and effect of proteolytic degradation. Biochem Biophys Res Commun 194:351–357.PubMedCrossRefGoogle Scholar
  23. Bigg HF, Rowan AD, Barker MD et al (2007) Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J 274:1246–1255.PubMedCrossRefGoogle Scholar
  24. Boulégue C, Musiol H-J, Götz MG et al (2008) Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 10:113–125.PubMedCrossRefGoogle Scholar
  25. Bourguignon LYW, Gunja-Smith Z, Iida N et al (1998a) CD44v3,8–10 is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176:206–215.PubMedCrossRefGoogle Scholar
  26. Bourguignon LYW, Zhu D, Zhu H (1998b) CD44 isoform-cytoskeleton interaction in oncogenic signaling and tumor progression. Frontiers Biosci 3:637–649.Google Scholar
  27. Brooks PC, Silletti S, von Schalscha TL et al (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92:391–400.PubMedCrossRefGoogle Scholar
  28. Brooks PC, Strömblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693.PubMedCrossRefGoogle Scholar
  29. Carafoli F, Bihan D, Stathopoulos S et al (2009) Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure 17:1573–1581.PubMedCrossRefGoogle Scholar
  30. Chelberg MK, McCarthy JB, Skubitz APN et al (1990) Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol 111:261–270.PubMedCrossRefGoogle Scholar
  31. Chung L, Dinakarpandian D, Yoshida N et al (2004) Collagenase unwinds triple helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030.PubMedCrossRefGoogle Scholar
  32. Clark EA, Golub TR, Lander ES et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535.PubMedCrossRefGoogle Scholar
  33. Clark IN, Cawston TE (1989) Fragments of human fibroblast collagenase: purification and characterization. Biochem J 263:201–206.PubMedGoogle Scholar
  34. Cole WG (1994) Collagen genes: mutations affecting collagen structure and expression. Prog Nucleic Acid Res Mol Biol 47:29–80.PubMedCrossRefGoogle Scholar
  35. Colorado PC, Torre A, Kamphaus G et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526.PubMedGoogle Scholar
  36. Cretu A, Brooks PC (2007) Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 213:391–402.PubMedCrossRefGoogle Scholar
  37. Davis GE (1992) Affinity of integrins for damaged extracellular matrix: αvβ3 binds to dematured collagen type I through RGD sites. Biochem Biophys Res Commun 182:1025–1031.PubMedCrossRefGoogle Scholar
  38. Davis GE, Bayless KJ, Davis MJ et al (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156:1489–1498.PubMedCrossRefGoogle Scholar
  39. De Souza SJ, Pereira HM, Jacchieri S et al (1996) Collagen/collagenase interaction: does the enzyme mimic the conformation of its own substrate? FASEB J 10:927–930.PubMedGoogle Scholar
  40. DeClerck YA, Bomann ET, Spengler BA et al (1987) Differential collagen biosynthesis by human neuroblastoma cell variants. Cancer Res 47:6505–6510.PubMedGoogle Scholar
  41. Dennis J, Waller C, Timpl R et al (1982) Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300:274–276.PubMedCrossRefGoogle Scholar
  42. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18.PubMedCrossRefGoogle Scholar
  43. Devy L, HUang L, Naa L et al (2009) Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 69:1517–1526.PubMedCrossRefGoogle Scholar
  44. Di Lullo GA, Sweeney SM, Körkkö J et al (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231.PubMedCrossRefGoogle Scholar
  45. Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectral cancer stem cells. Clin Cancer Res 14:6751–6760.PubMedCrossRefGoogle Scholar
  46. Dzamba BJ, Wu H, Jaenisch R et al (1993) Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J Cell Biol 121:1165–1172.PubMedCrossRefGoogle Scholar
  47. Eble J, Golbik R, Mann K et al (1993) The α1β1 integrin recognition site of the basement membrane collagen molecule α1(IV)2α2(IV). EMBO J 12:4795–4802.PubMedGoogle Scholar
  48. Eble JA, Ries A, Lichy A et al (1996) The recognition sites of the integrins α1β1 and α2β1 within collagen IV are protected against gelatinase A attack in the native protein. J Biol Chem 271:30964–30970.PubMedCrossRefGoogle Scholar
  49. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174.PubMedCrossRefGoogle Scholar
  50. Ehnis T, Dieterich W, Bauer M et al (1996) A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin). Exp Cell Res 229:388–397.PubMedCrossRefGoogle Scholar
  51. Eliaz RE, Szoka J, F.C. (2001) Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res 61:2592–2601.Google Scholar
  52. Emsley J, Knight CG, Farndale RW et al (2004) Structure of the integrin α2β1-binding collagen peptide. J Mol Biol 335:1019–1028.PubMedCrossRefGoogle Scholar
  53. Emsley J, Knight CG, Farndale RW et al (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101:47–56.PubMedCrossRefGoogle Scholar
  54. Erat MC, Slatter DA, Lowe ED et al (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–4200.PubMedCrossRefGoogle Scholar
  55. Faassen AE, Mooradian DL, Tranquillo RT et al (1993) Cell surface CD44-related chondroitin sulfate proteoglycan is required for transforming growth factor-β-stimulated mouse melanoma cell motility and invasive behavior on type I collagen. J Cell Sci 105:501–511.PubMedGoogle Scholar
  56. Faassen AE, Schrager JA, Klein DJ et al (1992) A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol 116:521–531.PubMedCrossRefGoogle Scholar
  57. Farndale RW, Lisman T, Bihan D et al (2008) Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions. Biochem Soc Trans 36:241–250.PubMedCrossRefGoogle Scholar
  58. Ferreras M, Felbor, U., Lenhard, T., Olsen, B. R., Delaisse, J. (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486(3): 247–251.PubMedCrossRefGoogle Scholar
  59. Fields CG, Mickelson DJ, Drake SL et al (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J Biol Chem 268:14153–14160.PubMedGoogle Scholar
  60. Fields GB (1991) A model for interstitial collagen catabolism by mammalian collagenases. J Theor Biol 153:585–602.PubMedCrossRefGoogle Scholar
  61. Fields GB, Lauer JL, Dori Y et al (1998) Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151.PubMedCrossRefGoogle Scholar
  62. Fingleton B (2007) Matrix metalloproteinases as valid clinical targets. Curr Pharm Des 13:333–346.PubMedCrossRefGoogle Scholar
  63. Friedl P, Maaser K, Klein CE et al (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res 57:2061–2070.PubMedGoogle Scholar
  64. Fujisaki T, Tanaka Y, Fujii K et al (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met activation of integrins. Cancer Res 59:4427–4434.PubMedGoogle Scholar
  65. Geiger B, Bershadsky A, Pankov R et al (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805.PubMedCrossRefGoogle Scholar
  66. Giles FJ (2001) The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist 6:32–39.PubMedCrossRefGoogle Scholar
  67. Goebeler M, Kaufmann D, Brocker EB et al (1996) Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J Cell Sci 109:1957–1964.PubMedGoogle Scholar
  68. Golbik R, Eble JA, Ries A et al (2000) The spatial orientation of the essential amino acid residues arginine and aspartate within the α1β1 integrin recognition site of collagen IV has been resolved using fluorescence resonance energy transfer. J Mol Biol 297:501–509.PubMedCrossRefGoogle Scholar
  69. Gordon MK, Hahn RA (2009) Collagens. Cell Tissue Res 339:247–257.PubMedCrossRefGoogle Scholar
  70. Griffioen AW, Coenen MJH, Damen CA et al (1997) CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90:1150–1159.PubMedGoogle Scholar
  71. Hamano Y, Zeisberg M, Sugimoto H et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha 3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alpha V beta 3 integrin. Cancer Cell 3:589–601.PubMedCrossRefGoogle Scholar
  72. Hashimoto T, Wakabayashi T, Watanabe A et al (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21:1524–1534.PubMedCrossRefGoogle Scholar
  73. Herbold KW, Zhou J, Haggerty JG et al (1996) CD44 expression on epidermal melanocytes. J Invest Dermatol 106:1230–1235.PubMedCrossRefGoogle Scholar
  74. Herr AB, Farndale RW (2009) Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 284:19781–19785.PubMedCrossRefGoogle Scholar
  75. Hofmann UB, Westphal JR, van Muijen GNP et al (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344.PubMedCrossRefGoogle Scholar
  76. Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular-cartilage slices in culture. J Biol Chem 267:3597–3604.PubMedGoogle Scholar
  77. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100.PubMedCrossRefGoogle Scholar
  78. Hornebeck W, Emonard H, Monboisse JC et al (2002) Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 12:231–241.PubMedCrossRefGoogle Scholar
  79. Hostikka SL, Tryggvason K (1988) the complete primary structure of the α2 chain of human type IV collagen and comparison with the α1(IV) chain. J Biol Chem 263:19488–19493.PubMedGoogle Scholar
  80. Hotary K, Allen E, Punturieri A et al (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323.PubMedCrossRefGoogle Scholar
  81. Hurst DR, Schwartz MA, Ghaffari MA et al (2004) Catalytic- and ecto-domains of membrane type 1-matrix metalloproteinase have similar inhibition profiles but distinct endopeptidase activities. Biochem J 377:775–779.PubMedCrossRefGoogle Scholar
  82. Iida J, Wilhelmson KL, Price MA et al (2004) Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. J Invest Dermatol 122:167–176.PubMedCrossRefGoogle Scholar
  83. Ikeda K, Wang LH, Torres R et al (2002) Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem 277:19206–19212.PubMedCrossRefGoogle Scholar
  84. Imai K, Hiramatsu A, Fukushima D et al (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta 1 release. Biochem J 322:809–814.PubMedGoogle Scholar
  85. Iozzo RV, Chakrani F, Perrotti D et al (1999) Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc Natl Acad Sci USA 96:3092–3097.PubMedCrossRefGoogle Scholar
  86. Iyer S, Visse R, Nagase H et al (2006) Crystal structure of an active form of human MMP-1. J Mol Biol 362:78–88.PubMedCrossRefGoogle Scholar
  87. Johansson S, Hook M (1980) Heparin enhances the rate of binding of fibronectin to collagen. Biochem J 187:521–524.PubMedGoogle Scholar
  88. Kajita M, Itoh Y, Chiba T et al (2001) Membrane-type 1 matrix metallproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904.PubMedCrossRefGoogle Scholar
  89. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433.PubMedCrossRefGoogle Scholar
  90. Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215.PubMedCrossRefGoogle Scholar
  91. Kanematsu A, Yamamoto S, Ozeki M et al (2004) Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520.PubMedCrossRefGoogle Scholar
  92. Karagiannis ED, Popel AS (2007) Identification of novel short peptides derived from the alpha 4, alpha 5, and alpha 6 fibrils of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun 354:434–439.PubMedCrossRefGoogle Scholar
  93. Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105:13775–13780.PubMedCrossRefGoogle Scholar
  94. Keildlouha V, Planchenault T (1986) Potential proteolytic activity of human-plasma fibronectin. Proc Natl Acad Sci USA 83:5377–5381.CrossRefGoogle Scholar
  95. Kenny HA, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118:1367–1379.PubMedCrossRefGoogle Scholar
  96. Khew ST, Tong YW (2008) Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Biochemistry 47:585–596.PubMedCrossRefGoogle Scholar
  97. Kim JK, Xu Y, Xu X et al (2005) A novel binding site in collagen type III for integrins α1β1 and α2β1. J Biol Chem 280:32512–32520.PubMedCrossRefGoogle Scholar
  98. Kim Y-M, Hwang S, Kim Y-M et al (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277:27872–27879.PubMedCrossRefGoogle Scholar
  99. Knäuper V, Cowell S, Smith B et al (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272:7608–7616.PubMedCrossRefGoogle Scholar
  100. Knäuper V, Osthues A, DeClerk YA et al (1993) Fragmentation of human polymorphonuclear-leukocyte collagenase. Biochem J 291:847–854.PubMedGoogle Scholar
  101. Knight CG, Morton LF, Onley DJ et al (1998) Identification in collagen type I of an integrin α2β1-binding site containing an essential GER sequence. J Biol Chem 273:33287–33294.PubMedCrossRefGoogle Scholar
  102. Knight CG, Morton LF, Peachey AR et al (2000) The collagen-binding A-domains of integrin α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275:35–40.PubMedCrossRefGoogle Scholar
  103. Knutson JR, Iida J, Fields GB et al (1996) CD44/chondroitin sulfate proteoglycan and α2β1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7:383–396.PubMedGoogle Scholar
  104. Konitsiotis AD, Raynal N, bihan D et al (2008) Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem 283:6861–6868.PubMedCrossRefGoogle Scholar
  105. Koshikawa N, Giannelli G, Cirulli V et al (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624.PubMedCrossRefGoogle Scholar
  106. Koskimaki JE, Karagiannis ED, Rosca EV et al (2009) Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11:1285-U1245.PubMedGoogle Scholar
  107. Kramer RH, Marks N (1989) Identification of intracellular collagen receptors on human melanoma cells. J Biol Chem 264:4684–4688.PubMedGoogle Scholar
  108. Kühn K, Eble J (1994) The structural bases of integrin-ligand interactions. Trends Cell Biol. 4:256–261.PubMedCrossRefGoogle Scholar
  109. Kuznetsova NV, McBride DJ, Leikin S (2003) Changes in thermal stability and microunfolding pattern of collagen helix resulting from the loss of alpha2(I) chain in osteogenesis imperfecta murine. J Mol Biol 331:191–200.PubMedCrossRefGoogle Scholar
  110. Lauer JL, Gendron CM, Fields GB (1998) Effect of ligand conformation on melanoma cell α3β1 integrin-mediated signal transduction events: implications for a collagen structural modulation mechanism of tumor cell invasion. Biochemistry 37:5279–5287.PubMedCrossRefGoogle Scholar
  111. Lauer-Fields JL, Malkar NB, Richet G et al (2003a) Melanoma cell CD44 interaction with the α1(IV)1263–1277 region from basement membrane collagen is modulated by ligand glycoslyation. J Biol Chem 278:14321–14330.PubMedCrossRefGoogle Scholar
  112. Lauer-Fields JL, Sritharan T, Stack MS et al (2003b) Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 278:18140–18145.PubMedCrossRefGoogle Scholar
  113. Leigh CJ, Palechek PL, Knutson JR et al (1996) CD44 expression in benign and malignant nevomelanocytic lesions. Hum Pathol 27:1288–1294.PubMedCrossRefGoogle Scholar
  114. Leitinger B (2003) Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2: identification of collagen binding sites sites in DDR2. J Biol Chem 278:16761–16769.PubMedCrossRefGoogle Scholar
  115. Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155.PubMedCrossRefGoogle Scholar
  116. Lesley J, Hyman R (1998) CD44 structure and function. Frontiers Biosci 3:616–630.Google Scholar
  117. Lesley J, Hyman R, English N et al (1997) CD44 in inflammation and metastasis. Glycoconjugate J 14:611–622.CrossRefGoogle Scholar
  118. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906.PubMedCrossRefGoogle Scholar
  119. Li C, McCarthy JB, Furcht LT et al (1997) An all-D amino acid peptide model of α1(IV)531–543 from type IV collagen binds the α3β1 integrin and mediates tumor cell adhesion, spreading, and motility. Biochemistry 36:15404–15410.PubMedCrossRefGoogle Scholar
  120. Linsenmayer TF (1991) Collagen. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 7–44.Google Scholar
  121. Maaser K, Wolf K, Klein CE et al (1999) Functional hierarchy of simultaneously expressed adhesion receptors: integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol Biol Cell 10:3067–3079.PubMedGoogle Scholar
  122. Maeshima Y, Sudhakar A, Lively JC et al (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143.PubMedCrossRefGoogle Scholar
  123. Malkar NB, Lauer-Fields JL, Borgia JA et al (2002) Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives. Biochemistry 41:6054–6064.PubMedCrossRefGoogle Scholar
  124. Maquart F-X, Pasco S, Ramont L et al (2004) An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol/Hematol 49:199–202.CrossRefGoogle Scholar
  125. Marom B, Rahat MA, Lahat N et al (2007) Native and fragmented fibronectin oppositely modulate monocyte secretion of MMP-9. J Leukocyte Biol 81:1466–1476.PubMedCrossRefGoogle Scholar
  126. Matsuki H, Yonezawa K, Obata K et al (2003) Monoclonal antibodies with defined recognition sequences in the stem region of CD44: detection of differential glycosylation of CD44 between tumor and stromal cells in tissue. Cancer Res 63:8278–8283.PubMedGoogle Scholar
  127. Mayo KH, Parra-Diaz D, McCarthy JB et al (1991) Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix. Biochemistry 30:8251–8267.PubMedCrossRefGoogle Scholar
  128. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540.PubMedCrossRefGoogle Scholar
  129. Melchiori A, Mortarini R, Carlone S et al (1995) The α3β1 integrin is involved in melanoma cell migration and invasion. Exp Cell Res 219:233–242.PubMedCrossRefGoogle Scholar
  130. Mickelson DJ, Faassen AE, McCarthy JB (1991) A cell surface chondroitin sulfate proteoglycan mediates melanoma cell motility and adhesion to a helical domain of type IV collagen. J Cell Biol 115:287a.Google Scholar
  131. Miles AJ, Knutson JR, Skubitz APN et al (1995) A peptide model of basement membrane collagen α1(IV)531–543 binds the α3β1 integrin. J Biol Chem 270:29047–29050.PubMedCrossRefGoogle Scholar
  132. Miles AJ, Skubitz APN, Furcht LT et al (1994) Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen α1(IV)531–543: evidence for conformationally dependent and corformationally independent type IV collagen cell adhesion sites. J Biol Chem 269:30939–30945.PubMedGoogle Scholar
  133. Misra S, Ghatak S, Toole BP (2005) Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem 280:20310–20315.PubMedCrossRefGoogle Scholar
  134. Mogford JE, Platts SH, Davies GE et al (1996) Vascular smooth muscle alpha v beta 3 integrin mediates vasodilation in response to RGD peptides and collagen fragments. FASEB J 10:3514–3514.Google Scholar
  135. Mori H, Tomari T, Koshifumi I et al (2002) CD44 directs membrane-type I matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J 21:3949–3959.PubMedCrossRefGoogle Scholar
  136. Morla A, Zhang ZH, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196.PubMedCrossRefGoogle Scholar
  137. Morrison CJ, Overall CM (2006) TIMP-independence of MMP-2 activation by MT2-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin domains. J Biol Chem 281:26528–26539.PubMedCrossRefGoogle Scholar
  138. Morton LF, Peachey AR, Knight CG et al (1997) The platelet reactivity of synthetic peptides based on the collagen III fragment α1(III)CB4. J Biol Chem 272:11044–11048.PubMedCrossRefGoogle Scholar
  139. Mott JD, Khalifah RG, Nagase H et al (1997) Nonenyzmatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52:1302–1312.PubMedCrossRefGoogle Scholar
  140. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564.PubMedCrossRefGoogle Scholar
  141. Murai T, Miyazaki Y, Nishinakamura H et al (2004) Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279:4541–4550.PubMedCrossRefGoogle Scholar
  142. Murphy G, Allan JA, Willenbrock F et al (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267:9612–9618.PubMedGoogle Scholar
  143. Myllyharju J, Kivirikko KI (2001) Collagen and collagen-related diseases. Ann Med 33:7–21.PubMedCrossRefGoogle Scholar
  144. Nakamura H, Suenaga N, Taniwaki K et al (2004) Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64:876–882.PubMedCrossRefGoogle Scholar
  145. Naor D, Nedvetzki S, Golan I et al (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579.PubMedCrossRefGoogle Scholar
  146. Naor D, Slonov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319.PubMedCrossRefGoogle Scholar
  147. Narayanan AS, Meyers DF, Page RC et al (1984) Action of mammalian collagenases on type-I trimer collagen. Collagen Rel Res 4:289–296.CrossRefGoogle Scholar
  148. Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biological activity and clinical implications. J Clin Oncol 18:1135–1149.PubMedGoogle Scholar
  149. Ng MR, Brugge JS (2009) A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16:455–457.PubMedCrossRefGoogle Scholar
  150. Niyibizi C, Chan R, Wu J-J et al (1994) A 92 kDa gelatinase (MMP-9) cleavage site in native type V collagen. Biochem Biophys Res Commun 202:328–333.PubMedCrossRefGoogle Scholar
  151. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285.PubMedCrossRefGoogle Scholar
  152. Ohnishi Y, Tajima S, Ishibashi A (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur J Dermatol 11:420–423.PubMedGoogle Scholar
  153. Ohuchi E, Imai K, Fujii Y et al (1997) Membrane type I matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451.PubMedCrossRefGoogle Scholar
  154. Okamoto I, Kawano Y, Tsuiki H et al (1999) CD44 cleavage induced by a membrane-associated metalloproteinase plays a critical role in tumor cell migration. Oncogene 18:1435–1446.PubMedCrossRefGoogle Scholar
  155. Olsen BR, Ninomiya Y (1999) Collagens: overview of the family. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins, 2nd edn. Oxford University Press, Oxford, pp 380–383.Google Scholar
  156. Ortiz-Urda S, Garcia J, Green CL et al (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307:1773–1776.PubMedCrossRefGoogle Scholar
  157. Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity. Mol Biotech 22:51–86.CrossRefGoogle Scholar
  158. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672.PubMedCrossRefGoogle Scholar
  159. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233.PubMedCrossRefGoogle Scholar
  160. Park HS, Kim KR, Lee HJ et al (2007) Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncol Rep 18:1435–1441.PubMedGoogle Scholar
  161. Perez JL, Jing SQ, Wong TW (1996) Identification of two isoforms of the Cak receptor kinase that are coexpressed in breast tumor cells lines. Oncogene 12:1469–1477.PubMedGoogle Scholar
  162. Perret S, Eble JA, Siljander PR-M et al (2003) Prolyl hydroxylation of collagen type I is required for efficient binding to integrin α1β1and platelet glycoprotein VI but not to α2β1. J Biol Chem 278:29873–29879.PubMedCrossRefGoogle Scholar
  163. Petitclerc E, Boutaud A, Prestayko A et al (2000) New functions for non-collagenous domains of human collagen type IV. J Biol Chem 275:8051–8061.PubMedCrossRefGoogle Scholar
  164. Pirila E, Sharabi A, Salo T et al (2003) Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration. Biochem Biophys Res Commun 303:1012–1017.PubMedCrossRefGoogle Scholar
  165. Platt VM, Szoka FC, Jr. (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5:474–486.PubMedCrossRefGoogle Scholar
  166. Pluda JM (1997) Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24:203–218.PubMedGoogle Scholar
  167. Ponnusamy MP, Batra SK (2008) Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res 1:4.PubMedCrossRefGoogle Scholar
  168. Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978.PubMedCrossRefGoogle Scholar
  169. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434.PubMedCrossRefGoogle Scholar
  170. Ram R, Lorente G, Nikolich K et al (2006) Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neurooncol 76:239–248.PubMedCrossRefGoogle Scholar
  171. Ramchandran R, Dhanabal M, Volk R et al (1999) Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255:735–739.PubMedCrossRefGoogle Scholar
  172. Ramont L, Brassart-Pasco S, Thevenard J et al (2007) The NC1 domain of type XIX collagen inhibits in vivo melanoma growth. Mol Cancer Ther 6:506–514.PubMedCrossRefGoogle Scholar
  173. Ranuncolo SM, Ladeda V, Gorostidy S et al (2002) Expression of CD44s and CD44 splice variants in human melanoma. Oncol Rep 9:51–56.PubMedGoogle Scholar
  174. Raynal N, Hamaia SW, Siljander PR-M et al (2006) Use of synthetic peptides to locate novel integrin α2β1-binding motifs in human collagen III. J Biol Chem 281:3821–3831.PubMedCrossRefGoogle Scholar
  175. Reed CC, Iozzo RV (2003) The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconjugate J 19:249–255.CrossRefGoogle Scholar
  176. Renner C, Saccá B, Moroder L (2004) Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers (Peptide Sci) 76:34–47.CrossRefGoogle Scholar
  177. Riikonen T, Westermarck J, Koivisto L et al (1995) Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression. J Biol Chem 270:13548–13552.PubMedCrossRefGoogle Scholar
  178. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27:5287–5297.CrossRefGoogle Scholar
  179. Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413.PubMedCrossRefGoogle Scholar
  180. Rupard JH, Dimari SJ, Damjanov I et al (1988) Synthesis of type I homotrimer collagen molecules by cultured human lung adenocarcinoma cells. Am J Pathol 133:316–326.PubMedGoogle Scholar
  181. Sabeh F, Ota I, Holmbeck K et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781.PubMedCrossRefGoogle Scholar
  182. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19.PubMedCrossRefGoogle Scholar
  183. Saccá B, Sinner E-K, Kaiser J et al (2002) Binding and docking of synthetic heterotrimeric collagen type IV peptides with α1β1 integrin. ChemBioChem 9:904–907.CrossRefGoogle Scholar
  184. Schepel J, Tschesche, H. (2000) The proteolytic activity of the recombinant cryptic human fibronectin Type IV collagenase from E. Coli expression. J Protein Chem 19:685–692.CrossRefGoogle Scholar
  185. Schor SL, Ellis I, Dolman C et al (1996) Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin. J Cell Sci 109:2581–2590.PubMedGoogle Scholar
  186. Screaton GR, Bell MV, Jackson DG et al (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89:12160–12164.PubMedCrossRefGoogle Scholar
  187. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194:1–11.PubMedCrossRefGoogle Scholar
  188. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958.PubMedCrossRefGoogle Scholar
  189. Shrivastava A, Radziejewski C, Campbell E et al (1997) An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1:25–34.PubMedCrossRefGoogle Scholar
  190. Slack BE, Siniaia MS, Blusztajn JK (2006) Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. J Cell Biochem 98:672–684.PubMedCrossRefGoogle Scholar
  191. Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559.PubMedCrossRefGoogle Scholar
  192. Staatz WD, Rajpara SM, Wayner EA et al (1989) The membrane glycoprotein Ia–IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol 108:1917–1924.PubMedCrossRefGoogle Scholar
  193. Stamenkovic I, Yu Q (2009) Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol 129:1321–1324.PubMedCrossRefGoogle Scholar
  194. Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 270:11555–11566.PubMedCrossRefGoogle Scholar
  195. Stricker TP, Dumin JA, Dickeson SK et al (2001) Structural analysis of the α2 integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J Biol Chem 276:29375–29381.PubMedCrossRefGoogle Scholar
  196. Sweeney SM, DiLullo G, Slater SJ et al (2003) Angiogenesis in collagen I requires α2β1 ligation of a GFP*GER sequence, and possibly p38 MAPK and focal adhesion disassembly. J Biol Chem 278:30516–30524.PubMedCrossRefGoogle Scholar
  197. Sweeney SM, Orgel JP, Fertala A et al (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197.PubMedCrossRefGoogle Scholar
  198. Szabova L, Chrysovergis K, Yamada SS et al (2007) MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27:3274–3281.PubMedCrossRefGoogle Scholar
  199. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380.PubMedCrossRefGoogle Scholar
  200. Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502.PubMedCrossRefGoogle Scholar
  201. Tran KT, Lamb P, Deng JS (2005) Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J Dermatol Sci 40:11–20.PubMedCrossRefGoogle Scholar
  202. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298.PubMedCrossRefGoogle Scholar
  203. Vidmar SL, Lottspeich F, Emod I et al (1991) Collagen-binding domain of human plasma fibronectin contains a latent type-IV collagenase. Eur J Biochem 201:79–84.CrossRefGoogle Scholar
  204. Vo HP, Lee MK, Crowe DL (1998) α2β1 integrin signaling via the mitogen activated protein kinase pathway modulates retinoic acid-dependent tumor cell invasion and transcriptional downregulation of matrix metalloproteinase 9 activity. Int J Oncol 13:1127–1134.PubMedGoogle Scholar
  205. Vogel W, Gish GD, Alves F et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23.PubMedCrossRefGoogle Scholar
  206. Vogel WF (2001) Collagen-receptor signaling in health and disease. Eur J Dermatol 11:506–514.PubMedGoogle Scholar
  207. Wald M, Olejár T, Sebková V et al (2001) Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother Pharmacol 47:S16–S22.PubMedCrossRefGoogle Scholar
  208. Wall SJ, Werner E, Werb Z et al (2005) Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. J Biol Chem 280:40187–40194.PubMedCrossRefGoogle Scholar
  209. Weber GF, Bronson RT, Hagan J et al (2002) Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 62:2281–2286.PubMedGoogle Scholar
  210. Wen W, Moses MA, Wiederschain D et al (1999) The generation of endostatin is mediated by elastase. Cancer Res 59:6052–6056.PubMedGoogle Scholar
  211. Werb Z, Tremble PM, Behrendtsen O et al (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene-expression. J Cell Biol 109:877–889.PubMedCrossRefGoogle Scholar
  212. Woessner JF, Nagase H (2000) Matrix metalloproteinases and TIMPs. Oxford University Press, Oxford.Google Scholar
  213. Xu J, Rodriguez D, Petitclerc E et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1080.PubMedCrossRefGoogle Scholar
  214. Xu X, Chen Z, Wang Y et al (2005) Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2. Biochem J 392:127–134.PubMedCrossRefGoogle Scholar
  215. Xu Y, Gurusiddappa S, Rich RL et al (2000) Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J Biol Chem 275:38981–38989.PubMedCrossRefGoogle Scholar
  216. Yoshinaga IG, Vink J, Dekker SK et al (1993) Role of α3β1 and α2β1 integrins in melanoma cell migration. Melanoma Res 3:435–441.PubMedCrossRefGoogle Scholar
  217. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13:35–48.PubMedCrossRefGoogle Scholar
  218. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176.PubMedGoogle Scholar
  219. Yu WH, Woessner JF, Jr., McNeish JD et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16:307–323.PubMedCrossRefGoogle Scholar
  220. Yu Y-C, Pakalns T, Dori Y et al (1997) Construction of biologically active protein molecular architecture using self-assembling peptide-amphiphiles. Methods Enzymol 289:571–587.PubMedCrossRefGoogle Scholar
  221. Zhang W, Matrisian LM, Holmbeck K et al (2006) Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52.PubMedCrossRefGoogle Scholar
  222. Zhang W-M, Käpylä J, Puranen JS et al (2003) α11β1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 278:7270–7277.PubMedCrossRefGoogle Scholar
  223. Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28:740–749.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations