Skip to main content

Collagen in Cancer

  • Chapter
  • First Online:
The Tumor Microenvironment

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Collagen is a key structural component of the extracellular matrix (ECM), and also serves as a modular of diverse signaling pathways. Intact collagens may be upregulated in cancer to provide a rigid matrix that facilitates tumor growth. In turn, collagen catabolism by matrix metalloproteinases (MMPs) and other proteases reveals previously hidden binding sites that promote angiogenesis and tumor invasion. A variety of cell surface biomolecules (integrins, CD44, DDRs) and other ECM proteins and proteoglycans [fibronectin (FN), laminin (LNs), decorin] interact with collagen, and these interactions, along with the structural state of collagen, provide the foundation for tumorigenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulhussein R, Koo DHH, Vogel WF (2008) Identification of disulfide-linked dimers of the receptor tyrosine kinase DDR1. J Biol Chem 283:12026–12033.

    Article  PubMed  CAS  Google Scholar 

  • Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal G, Kovac L, Radziejewski C et al (2002) Binding of discoidin domain receptor 2 to ­collagen I: an atomic force microscopy investigation. Biochemistry 41:11091–11098.

    Article  PubMed  CAS  Google Scholar 

  • Ahrens T, Assmann V, Fieber C et al (2001) CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol 116:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Al-Hazmi N, Thomas GJ, Speight PM et al (2007) The 120 kDa cell-binding fragment of fibronectin up-regulates migration of alpha v beta 6-expressing cells by increasing matrix metalloproteinase-2 and-9 secretion. Eur J Oral Sci 115:454–458.

    Article  PubMed  CAS  Google Scholar 

  • Alves CS, Yakovlev S, Medved L et al (2009) Biomolecular characterization of CD44-fibrin(ogen) binding. J Biol Chem 284:1177–1189.

    Article  PubMed  CAS  Google Scholar 

  • Alves F, Vogel W, Mossie K et al (1995) Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10:609–618.

    PubMed  CAS  Google Scholar 

  • Anderegg U, Eichenberg T, Parthaune T et al (2009) ADAM10 is the constitutive functional sheddase of CD44 in human melanoma cells. J Invest Dermatol 129:1471–1482.

    Article  PubMed  CAS  Google Scholar 

  • Asokan R, Reddy GK, Dhar SC (1993) Neoplastic association of enhanced type-V collagen production in rat fibrosarcoma. Mol Cell Biochem 120:25–32.

    Article  PubMed  CAS  Google Scholar 

  • Autelitano DJ, Rajic A, Smith AI et al (2006) The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov Today 11:306–314.

    Article  PubMed  CAS  Google Scholar 

  • Bao X, Kobayashi M, Hatakeyama S et al (2009) Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 106:12109–12114.

    Article  PubMed  CAS  Google Scholar 

  • Barker KT, Martindale JE, Mitchell PJ et al (1995) Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumors. Oncogene 11:569–575.

    Google Scholar 

  • Barnes MJ, Knight CG, Farndale RW (1996) The use of collagen-based model peptides to investigate platelet-reactive sequences in collagen. Biopolymers (Peptide Sci) 40:383–397.

    Article  CAS  Google Scholar 

  • Baronas-Lowell D, Lauer-Fields JL, Borgia JA et al (2004a) Differential modulation of human melanoma cell metalloproteinase expression by α2β1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 279:43503–43513.

    Article  PubMed  CAS  Google Scholar 

  • Baronas-Lowell D, Lauer-Fields JL, Fields GB (2004b) Induction of endothelial cell activation by a triple-helical α2β1 integrin ligand derived from type I collagen α1(I)496–507. J Biol Chem 279:952–962.

    Article  PubMed  CAS  Google Scholar 

  • Barth L, Sinner EK, Cadamuro SA et al (2009) Homotrimeric collagen peptides as model sys­-tems for cell adhesion studies. In: Escher E, Lubell WD, Del Valle S (eds) Peptides for youth: the proceedings of the 20th American Peptide Symposium. Springer Science, New York, pp 295–296.

    Google Scholar 

  • Baum J, Brodsky B (1999) Folding of peptide models of collagen and misfolding in disease. Curr Opin Struct Biol 9:122–128.

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Berman HM (2000) Integrin-collagen complex: a metal-glutamate handshake. Structure 8:R121–R126.

    Article  PubMed  CAS  Google Scholar 

  • Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol/Hematol 49:203–220.

    Article  Google Scholar 

  • Belotti D, Paganoni P, Manenti L et al (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63:5224–5229.

    PubMed  CAS  Google Scholar 

  • Bergers G, Brekken RA, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744.

    Article  PubMed  CAS  Google Scholar 

  • Berman A, Morozevich G, Karmansky I et al (1993) Adhesion of mouse hepatocytes to type I collagen: role of supramolecular forms and effect of proteolytic degradation. Biochem Biophys Res Commun 194:351–357.

    Article  PubMed  CAS  Google Scholar 

  • Bigg HF, Rowan AD, Barker MD et al (2007) Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J 274:1246–1255.

    Article  PubMed  CAS  Google Scholar 

  • Boulégue C, Musiol H-J, Götz MG et al (2008) Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 10:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LYW, Gunja-Smith Z, Iida N et al (1998a) CD44v3,8–10 is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176:206–215.

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LYW, Zhu D, Zhu H (1998b) CD44 isoform-cytoskeleton interaction in oncogenic signaling and tumor progression. Frontiers Biosci 3:637–649.

    Google Scholar 

  • Brooks PC, Silletti S, von Schalscha TL et al (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92:391–400.

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Strömblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli F, Bihan D, Stathopoulos S et al (2009) Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure 17:1573–1581.

    Article  PubMed  CAS  Google Scholar 

  • Chelberg MK, McCarthy JB, Skubitz APN et al (1990) Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol 111:261–270.

    Article  PubMed  CAS  Google Scholar 

  • Chung L, Dinakarpandian D, Yoshida N et al (2004) Collagenase unwinds triple helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030.

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Clark IN, Cawston TE (1989) Fragments of human fibroblast collagenase: purification and characterization. Biochem J 263:201–206.

    PubMed  CAS  Google Scholar 

  • Cole WG (1994) Collagen genes: mutations affecting collagen structure and expression. Prog Nucleic Acid Res Mol Biol 47:29–80.

    Article  PubMed  CAS  Google Scholar 

  • Colorado PC, Torre A, Kamphaus G et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526.

    PubMed  CAS  Google Scholar 

  • Cretu A, Brooks PC (2007) Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 213:391–402.

    Article  PubMed  CAS  Google Scholar 

  • Davis GE (1992) Affinity of integrins for damaged extracellular matrix: αvβ3 binds to dematured collagen type I through RGD sites. Biochem Biophys Res Commun 182:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  • Davis GE, Bayless KJ, Davis MJ et al (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156:1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • De Souza SJ, Pereira HM, Jacchieri S et al (1996) Collagen/collagenase interaction: does the enzyme mimic the conformation of its own substrate? FASEB J 10:927–930.

    PubMed  CAS  Google Scholar 

  • DeClerck YA, Bomann ET, Spengler BA et al (1987) Differential collagen biosynthesis by human neuroblastoma cell variants. Cancer Res 47:6505–6510.

    PubMed  CAS  Google Scholar 

  • Dennis J, Waller C, Timpl R et al (1982) Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300:274–276.

    Article  PubMed  CAS  Google Scholar 

  • Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18.

    Article  PubMed  CAS  Google Scholar 

  • Devy L, HUang L, Naa L et al (2009) Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 69:1517–1526.

    Article  PubMed  CAS  Google Scholar 

  • Di Lullo GA, Sweeney SM, Körkkö J et al (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231.

    Article  PubMed  CAS  Google Scholar 

  • Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectral cancer stem cells. Clin Cancer Res 14:6751–6760.

    Article  PubMed  CAS  Google Scholar 

  • Dzamba BJ, Wu H, Jaenisch R et al (1993) Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J Cell Biol 121:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Eble J, Golbik R, Mann K et al (1993) The α1β1 integrin recognition site of the basement membrane collagen molecule α1(IV)2α2(IV). EMBO J 12:4795–4802.

    PubMed  CAS  Google Scholar 

  • Eble JA, Ries A, Lichy A et al (1996) The recognition sites of the integrins α1β1 and α2β1 within collagen IV are protected against gelatinase A attack in the native protein. J Biol Chem 271:30964–30970.

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Ehnis T, Dieterich W, Bauer M et al (1996) A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin). Exp Cell Res 229:388–397.

    Article  PubMed  CAS  Google Scholar 

  • Eliaz RE, Szoka J, F.C. (2001) Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res 61:2592–2601.

    Google Scholar 

  • Emsley J, Knight CG, Farndale RW et al (2004) Structure of the integrin α2β1-binding collagen peptide. J Mol Biol 335:1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Emsley J, Knight CG, Farndale RW et al (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101:47–56.

    Article  PubMed  CAS  Google Scholar 

  • Erat MC, Slatter DA, Lowe ED et al (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–4200.

    Article  PubMed  CAS  Google Scholar 

  • Faassen AE, Mooradian DL, Tranquillo RT et al (1993) Cell surface CD44-related chondroitin sulfate proteoglycan is required for transforming growth factor-β-stimulated mouse melanoma cell motility and invasive behavior on type I collagen. J Cell Sci 105:501–511.

    PubMed  CAS  Google Scholar 

  • Faassen AE, Schrager JA, Klein DJ et al (1992) A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol 116:521–531.

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Lisman T, Bihan D et al (2008) Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions. Biochem Soc Trans 36:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Ferreras M, Felbor, U., Lenhard, T., Olsen, B. R., Delaisse, J. (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486(3): 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Fields CG, Mickelson DJ, Drake SL et al (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J Biol Chem 268:14153–14160.

    PubMed  CAS  Google Scholar 

  • Fields GB (1991) A model for interstitial collagen catabolism by mammalian collagenases. J Theor Biol 153:585–602.

    Article  PubMed  CAS  Google Scholar 

  • Fields GB, Lauer JL, Dori Y et al (1998) Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Fingleton B (2007) Matrix metalloproteinases as valid clinical targets. Curr Pharm Des 13:333–346.

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Maaser K, Klein CE et al (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res 57:2061–2070.

    PubMed  CAS  Google Scholar 

  • Fujisaki T, Tanaka Y, Fujii K et al (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met activation of integrins. Cancer Res 59:4427–4434.

    PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R et al (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805.

    Article  PubMed  CAS  Google Scholar 

  • Giles FJ (2001) The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist 6:32–39.

    Article  PubMed  CAS  Google Scholar 

  • Goebeler M, Kaufmann D, Brocker EB et al (1996) Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J Cell Sci 109:1957–1964.

    PubMed  CAS  Google Scholar 

  • Golbik R, Eble JA, Ries A et al (2000) The spatial orientation of the essential amino acid residues arginine and aspartate within the α1β1 integrin recognition site of collagen IV has been resolved using fluorescence resonance energy transfer. J Mol Biol 297:501–509.

    Article  PubMed  CAS  Google Scholar 

  • Gordon MK, Hahn RA (2009) Collagens. Cell Tissue Res 339:247–257.

    Article  PubMed  CAS  Google Scholar 

  • Griffioen AW, Coenen MJH, Damen CA et al (1997) CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90:1150–1159.

    PubMed  CAS  Google Scholar 

  • Hamano Y, Zeisberg M, Sugimoto H et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha 3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alpha V beta 3 integrin. Cancer Cell 3:589–601.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Wakabayashi T, Watanabe A et al (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21:1524–1534.

    Article  PubMed  CAS  Google Scholar 

  • Herbold KW, Zhou J, Haggerty JG et al (1996) CD44 expression on epidermal melanocytes. J Invest Dermatol 106:1230–1235.

    Article  PubMed  CAS  Google Scholar 

  • Herr AB, Farndale RW (2009) Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 284:19781–19785.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann UB, Westphal JR, van Muijen GNP et al (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344.

    Article  PubMed  CAS  Google Scholar 

  • Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular-cartilage slices in culture. J Biol Chem 267:3597–3604.

    PubMed  CAS  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100.

    Article  PubMed  Google Scholar 

  • Hornebeck W, Emonard H, Monboisse JC et al (2002) Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 12:231–241.

    Article  PubMed  CAS  Google Scholar 

  • Hostikka SL, Tryggvason K (1988) the complete primary structure of the α2 chain of human type IV collagen and comparison with the α1(IV) chain. J Biol Chem 263:19488–19493.

    PubMed  CAS  Google Scholar 

  • Hotary K, Allen E, Punturieri A et al (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323.

    Article  PubMed  CAS  Google Scholar 

  • Hurst DR, Schwartz MA, Ghaffari MA et al (2004) Catalytic- and ecto-domains of membrane type 1-matrix metalloproteinase have similar inhibition profiles but distinct endopeptidase activities. Biochem J 377:775–779.

    Article  PubMed  CAS  Google Scholar 

  • Iida J, Wilhelmson KL, Price MA et al (2004) Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. J Invest Dermatol 122:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Wang LH, Torres R et al (2002) Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem 277:19206–19212.

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Hiramatsu A, Fukushima D et al (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta 1 release. Biochem J 322:809–814.

    PubMed  CAS  Google Scholar 

  • Iozzo RV, Chakrani F, Perrotti D et al (1999) Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc Natl Acad Sci USA 96:3092–3097.

    Article  PubMed  CAS  Google Scholar 

  • Iyer S, Visse R, Nagase H et al (2006) Crystal structure of an active form of human MMP-1. J Mol Biol 362:78–88.

    Article  PubMed  CAS  Google Scholar 

  • Johansson S, Hook M (1980) Heparin enhances the rate of binding of fibronectin to collagen. Biochem J 187:521–524.

    PubMed  CAS  Google Scholar 

  • Kajita M, Itoh Y, Chiba T et al (2001) Membrane-type 1 matrix metallproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904.

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433.

    Article  PubMed  CAS  Google Scholar 

  • Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  • Kanematsu A, Yamamoto S, Ozeki M et al (2004) Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520.

    Article  PubMed  CAS  Google Scholar 

  • Karagiannis ED, Popel AS (2007) Identification of novel short peptides derived from the alpha 4, alpha 5, and alpha 6 fibrils of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun 354:434–439.

    Article  PubMed  CAS  Google Scholar 

  • Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105:13775–13780.

    Article  PubMed  CAS  Google Scholar 

  • Keildlouha V, Planchenault T (1986) Potential proteolytic activity of human-plasma fibronectin. Proc Natl Acad Sci USA 83:5377–5381.

    Article  CAS  Google Scholar 

  • Kenny HA, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118:1367–1379.

    Article  PubMed  CAS  Google Scholar 

  • Khew ST, Tong YW (2008) Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Biochemistry 47:585–596.

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Xu Y, Xu X et al (2005) A novel binding site in collagen type III for integrins α1β1 and α2β1. J Biol Chem 280:32512–32520.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-M, Hwang S, Kim Y-M et al (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277:27872–27879.

    Article  PubMed  CAS  Google Scholar 

  • Knäuper V, Cowell S, Smith B et al (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272:7608–7616.

    Article  PubMed  Google Scholar 

  • Knäuper V, Osthues A, DeClerk YA et al (1993) Fragmentation of human polymorphonuclear-leukocyte collagenase. Biochem J 291:847–854.

    PubMed  Google Scholar 

  • Knight CG, Morton LF, Onley DJ et al (1998) Identification in collagen type I of an integrin α2β1-binding site containing an essential GER sequence. J Biol Chem 273:33287–33294.

    Article  PubMed  CAS  Google Scholar 

  • Knight CG, Morton LF, Peachey AR et al (2000) The collagen-binding A-domains of integrin α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275:35–40.

    Article  PubMed  CAS  Google Scholar 

  • Knutson JR, Iida J, Fields GB et al (1996) CD44/chondroitin sulfate proteoglycan and α2β1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7:383–396.

    PubMed  CAS  Google Scholar 

  • Konitsiotis AD, Raynal N, bihan D et al (2008) Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem 283:6861–6868.

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa N, Giannelli G, Cirulli V et al (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Koskimaki JE, Karagiannis ED, Rosca EV et al (2009) Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11:1285-U1245.

    PubMed  CAS  Google Scholar 

  • Kramer RH, Marks N (1989) Identification of intracellular collagen receptors on human melanoma cells. J Biol Chem 264:4684–4688.

    PubMed  CAS  Google Scholar 

  • Kühn K, Eble J (1994) The structural bases of integrin-ligand interactions. Trends Cell Biol. 4:256–261.

    Article  PubMed  Google Scholar 

  • Kuznetsova NV, McBride DJ, Leikin S (2003) Changes in thermal stability and microunfolding pattern of collagen helix resulting from the loss of alpha2(I) chain in osteogenesis imperfecta murine. J Mol Biol 331:191–200.

    Article  PubMed  CAS  Google Scholar 

  • Lauer JL, Gendron CM, Fields GB (1998) Effect of ligand conformation on melanoma cell α3β1 integrin-mediated signal transduction events: implications for a collagen structural modulation mechanism of tumor cell invasion. Biochemistry 37:5279–5287.

    Article  PubMed  CAS  Google Scholar 

  • Lauer-Fields JL, Malkar NB, Richet G et al (2003a) Melanoma cell CD44 interaction with the α1(IV)1263–1277 region from basement membrane collagen is modulated by ligand glycoslyation. J Biol Chem 278:14321–14330.

    Article  PubMed  CAS  Google Scholar 

  • Lauer-Fields JL, Sritharan T, Stack MS et al (2003b) Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 278:18140–18145.

    Article  PubMed  CAS  Google Scholar 

  • Leigh CJ, Palechek PL, Knutson JR et al (1996) CD44 expression in benign and malignant nevomelanocytic lesions. Hum Pathol 27:1288–1294.

    Article  PubMed  CAS  Google Scholar 

  • Leitinger B (2003) Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2: identification of collagen binding sites sites in DDR2. J Biol Chem 278:16761–16769.

    Article  PubMed  CAS  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155.

    Article  PubMed  CAS  Google Scholar 

  • Lesley J, Hyman R (1998) CD44 structure and function. Frontiers Biosci 3:616–630.

    Google Scholar 

  • Lesley J, Hyman R, English N et al (1997) CD44 in inflammation and metastasis. Glycoconjugate J 14:611–622.

    Article  CAS  Google Scholar 

  • Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906.

    Article  PubMed  CAS  Google Scholar 

  • Li C, McCarthy JB, Furcht LT et al (1997) An all-D amino acid peptide model of α1(IV)531–543 from type IV collagen binds the α3β1 integrin and mediates tumor cell adhesion, spreading, and motility. Biochemistry 36:15404–15410.

    Article  PubMed  CAS  Google Scholar 

  • Linsenmayer TF (1991) Collagen. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 7–44.

    Google Scholar 

  • Maaser K, Wolf K, Klein CE et al (1999) Functional hierarchy of simultaneously expressed adhesion receptors: integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol Biol Cell 10:3067–3079.

    PubMed  CAS  Google Scholar 

  • Maeshima Y, Sudhakar A, Lively JC et al (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143.

    Article  PubMed  CAS  Google Scholar 

  • Malkar NB, Lauer-Fields JL, Borgia JA et al (2002) Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives. Biochemistry 41:6054–6064.

    Article  PubMed  CAS  Google Scholar 

  • Maquart F-X, Pasco S, Ramont L et al (2004) An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol/Hematol 49:199–202.

    Article  Google Scholar 

  • Marom B, Rahat MA, Lahat N et al (2007) Native and fragmented fibronectin oppositely modulate monocyte secretion of MMP-9. J Leukocyte Biol 81:1466–1476.

    Article  PubMed  CAS  Google Scholar 

  • Matsuki H, Yonezawa K, Obata K et al (2003) Monoclonal antibodies with defined recognition sequences in the stem region of CD44: detection of differential glycosylation of CD44 between tumor and stromal cells in tissue. Cancer Res 63:8278–8283.

    PubMed  CAS  Google Scholar 

  • Mayo KH, Parra-Diaz D, McCarthy JB et al (1991) Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix. Biochemistry 30:8251–8267.

    Article  PubMed  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540.

    Article  PubMed  CAS  Google Scholar 

  • Melchiori A, Mortarini R, Carlone S et al (1995) The α3β1 integrin is involved in melanoma cell migration and invasion. Exp Cell Res 219:233–242.

    Article  PubMed  CAS  Google Scholar 

  • Mickelson DJ, Faassen AE, McCarthy JB (1991) A cell surface chondroitin sulfate proteoglycan mediates melanoma cell motility and adhesion to a helical domain of type IV collagen. J Cell Biol 115:287a.

    Google Scholar 

  • Miles AJ, Knutson JR, Skubitz APN et al (1995) A peptide model of basement membrane collagen α1(IV)531–543 binds the α3β1 integrin. J Biol Chem 270:29047–29050.

    Article  PubMed  CAS  Google Scholar 

  • Miles AJ, Skubitz APN, Furcht LT et al (1994) Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen α1(IV)531–543: evidence for conformationally dependent and corformationally independent type IV collagen cell adhesion sites. J Biol Chem 269:30939–30945.

    PubMed  CAS  Google Scholar 

  • Misra S, Ghatak S, Toole BP (2005) Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem 280:20310–20315.

    Article  PubMed  CAS  Google Scholar 

  • Mogford JE, Platts SH, Davies GE et al (1996) Vascular smooth muscle alpha v beta 3 integrin mediates vasodilation in response to RGD peptides and collagen fragments. FASEB J 10:3514–3514.

    Google Scholar 

  • Mori H, Tomari T, Koshifumi I et al (2002) CD44 directs membrane-type I matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J 21:3949–3959.

    Article  PubMed  CAS  Google Scholar 

  • Morla A, Zhang ZH, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196.

    Article  PubMed  CAS  Google Scholar 

  • Morrison CJ, Overall CM (2006) TIMP-independence of MMP-2 activation by MT2-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin domains. J Biol Chem 281:26528–26539.

    Article  PubMed  CAS  Google Scholar 

  • Morton LF, Peachey AR, Knight CG et al (1997) The platelet reactivity of synthetic peptides based on the collagen III fragment α1(III)CB4. J Biol Chem 272:11044–11048.

    Article  PubMed  CAS  Google Scholar 

  • Mott JD, Khalifah RG, Nagase H et al (1997) Nonenyzmatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52:1302–1312.

    Article  PubMed  CAS  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564.

    Article  PubMed  CAS  Google Scholar 

  • Murai T, Miyazaki Y, Nishinakamura H et al (2004) Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279:4541–4550.

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Allan JA, Willenbrock F et al (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267:9612–9618.

    PubMed  CAS  Google Scholar 

  • Myllyharju J, Kivirikko KI (2001) Collagen and collagen-related diseases. Ann Med 33:7–21.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Suenaga N, Taniwaki K et al (2004) Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64:876–882.

    Article  PubMed  CAS  Google Scholar 

  • Naor D, Nedvetzki S, Golan I et al (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579.

    Article  PubMed  CAS  Google Scholar 

  • Naor D, Slonov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan AS, Meyers DF, Page RC et al (1984) Action of mammalian collagenases on type-I trimer collagen. Collagen Rel Res 4:289–296.

    Article  CAS  Google Scholar 

  • Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biological activity and clinical implications. J Clin Oncol 18:1135–1149.

    PubMed  CAS  Google Scholar 

  • Ng MR, Brugge JS (2009) A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16:455–457.

    Article  PubMed  CAS  Google Scholar 

  • Niyibizi C, Chan R, Wu J-J et al (1994) A 92 kDa gelatinase (MMP-9) cleavage site in native type V collagen. Biochem Biophys Res Commun 202:328–333.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285.

    Article  PubMed  Google Scholar 

  • Ohnishi Y, Tajima S, Ishibashi A (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur J Dermatol 11:420–423.

    PubMed  CAS  Google Scholar 

  • Ohuchi E, Imai K, Fujii Y et al (1997) Membrane type I matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Kawano Y, Tsuiki H et al (1999) CD44 cleavage induced by a membrane-associated metalloproteinase plays a critical role in tumor cell migration. Oncogene 18:1435–1446.

    Article  PubMed  CAS  Google Scholar 

  • Olsen BR, Ninomiya Y (1999) Collagens: overview of the family. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins, 2nd edn. Oxford University Press, Oxford, pp 380–383.

    Google Scholar 

  • Ortiz-Urda S, Garcia J, Green CL et al (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307:1773–1776.

    Article  PubMed  CAS  Google Scholar 

  • Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity. Mol Biotech 22:51–86.

    Article  CAS  Google Scholar 

  • Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672.

    Article  PubMed  CAS  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233.

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Kim KR, Lee HJ et al (2007) Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncol Rep 18:1435–1441.

    PubMed  CAS  Google Scholar 

  • Perez JL, Jing SQ, Wong TW (1996) Identification of two isoforms of the Cak receptor kinase that are coexpressed in breast tumor cells lines. Oncogene 12:1469–1477.

    PubMed  CAS  Google Scholar 

  • Perret S, Eble JA, Siljander PR-M et al (2003) Prolyl hydroxylation of collagen type I is required for efficient binding to integrin α1β1and platelet glycoprotein VI but not to α2β1. J Biol Chem 278:29873–29879.

    Article  PubMed  CAS  Google Scholar 

  • Petitclerc E, Boutaud A, Prestayko A et al (2000) New functions for non-collagenous domains of human collagen type IV. J Biol Chem 275:8051–8061.

    Article  PubMed  CAS  Google Scholar 

  • Pirila E, Sharabi A, Salo T et al (2003) Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration. Biochem Biophys Res Commun 303:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Platt VM, Szoka FC, Jr. (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5:474–486.

    Article  PubMed  CAS  Google Scholar 

  • Pluda JM (1997) Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24:203–218.

    PubMed  CAS  Google Scholar 

  • Ponnusamy MP, Batra SK (2008) Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res 1:4.

    Article  PubMed  CAS  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978.

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434.

    Article  PubMed  CAS  Google Scholar 

  • Ram R, Lorente G, Nikolich K et al (2006) Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neurooncol 76:239–248.

    Article  PubMed  CAS  Google Scholar 

  • Ramchandran R, Dhanabal M, Volk R et al (1999) Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255:735–739.

    Article  PubMed  CAS  Google Scholar 

  • Ramont L, Brassart-Pasco S, Thevenard J et al (2007) The NC1 domain of type XIX collagen inhibits in vivo melanoma growth. Mol Cancer Ther 6:506–514.

    Article  PubMed  CAS  Google Scholar 

  • Ranuncolo SM, Ladeda V, Gorostidy S et al (2002) Expression of CD44s and CD44 splice variants in human melanoma. Oncol Rep 9:51–56.

    PubMed  Google Scholar 

  • Raynal N, Hamaia SW, Siljander PR-M et al (2006) Use of synthetic peptides to locate novel integrin α2β1-binding motifs in human collagen III. J Biol Chem 281:3821–3831.

    Article  PubMed  CAS  Google Scholar 

  • Reed CC, Iozzo RV (2003) The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconjugate J 19:249–255.

    Article  Google Scholar 

  • Renner C, Saccá B, Moroder L (2004) Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers (Peptide Sci) 76:34–47.

    Article  CAS  Google Scholar 

  • Riikonen T, Westermarck J, Koivisto L et al (1995) Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression. J Biol Chem 270:13548–13552.

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27:5287–5297.

    Article  CAS  Google Scholar 

  • Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413.

    Article  PubMed  CAS  Google Scholar 

  • Rupard JH, Dimari SJ, Damjanov I et al (1988) Synthesis of type I homotrimer collagen molecules by cultured human lung adenocarcinoma cells. Am J Pathol 133:316–326.

    PubMed  CAS  Google Scholar 

  • Sabeh F, Ota I, Holmbeck K et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781.

    Article  PubMed  CAS  Google Scholar 

  • Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Saccá B, Sinner E-K, Kaiser J et al (2002) Binding and docking of synthetic heterotrimeric collagen type IV peptides with α1β1 integrin. ChemBioChem 9:904–907.

    Article  Google Scholar 

  • Schepel J, Tschesche, H. (2000) The proteolytic activity of the recombinant cryptic human fibronectin Type IV collagenase from E. Coli expression. J Protein Chem 19:685–692.

    Article  Google Scholar 

  • Schor SL, Ellis I, Dolman C et al (1996) Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin. J Cell Sci 109:2581–2590.

    PubMed  CAS  Google Scholar 

  • Screaton GR, Bell MV, Jackson DG et al (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89:12160–12164.

    Article  PubMed  CAS  Google Scholar 

  • Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958.

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava A, Radziejewski C, Campbell E et al (1997) An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Slack BE, Siniaia MS, Blusztajn JK (2006) Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. J Cell Biochem 98:672–684.

    Article  PubMed  CAS  Google Scholar 

  • Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559.

    Article  PubMed  CAS  Google Scholar 

  • Staatz WD, Rajpara SM, Wayner EA et al (1989) The membrane glycoprotein Ia–IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol 108:1917–1924.

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I, Yu Q (2009) Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol 129:1321–1324.

    Article  PubMed  CAS  Google Scholar 

  • Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 270:11555–11566.

    Article  PubMed  CAS  Google Scholar 

  • Stricker TP, Dumin JA, Dickeson SK et al (2001) Structural analysis of the α2 integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J Biol Chem 276:29375–29381.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney SM, DiLullo G, Slater SJ et al (2003) Angiogenesis in collagen I requires α2β1 ligation of a GFP*GER sequence, and possibly p38 MAPK and focal adhesion disassembly. J Biol Chem 278:30516–30524.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney SM, Orgel JP, Fertala A et al (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197.

    Article  PubMed  CAS  Google Scholar 

  • Szabova L, Chrysovergis K, Yamada SS et al (2007) MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27:3274–3281.

    Article  PubMed  CAS  Google Scholar 

  • Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380.

    Article  PubMed  CAS  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502.

    Article  PubMed  CAS  Google Scholar 

  • Tran KT, Lamb P, Deng JS (2005) Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J Dermatol Sci 40:11–20.

    Article  PubMed  CAS  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298.

    Article  PubMed  CAS  Google Scholar 

  • Vidmar SL, Lottspeich F, Emod I et al (1991) Collagen-binding domain of human plasma fibronectin contains a latent type-IV collagenase. Eur J Biochem 201:79–84.

    Article  Google Scholar 

  • Vo HP, Lee MK, Crowe DL (1998) α2β1 integrin signaling via the mitogen activated protein kinase pathway modulates retinoic acid-dependent tumor cell invasion and transcriptional downregulation of matrix metalloproteinase 9 activity. Int J Oncol 13:1127–1134.

    PubMed  CAS  Google Scholar 

  • Vogel W, Gish GD, Alves F et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Vogel WF (2001) Collagen-receptor signaling in health and disease. Eur J Dermatol 11:506–514.

    PubMed  CAS  Google Scholar 

  • Wald M, Olejár T, Sebková V et al (2001) Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother Pharmacol 47:S16–S22.

    Article  PubMed  CAS  Google Scholar 

  • Wall SJ, Werner E, Werb Z et al (2005) Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. J Biol Chem 280:40187–40194.

    Article  PubMed  CAS  Google Scholar 

  • Weber GF, Bronson RT, Hagan J et al (2002) Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 62:2281–2286.

    PubMed  CAS  Google Scholar 

  • Wen W, Moses MA, Wiederschain D et al (1999) The generation of endostatin is mediated by elastase. Cancer Res 59:6052–6056.

    PubMed  CAS  Google Scholar 

  • Werb Z, Tremble PM, Behrendtsen O et al (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene-expression. J Cell Biol 109:877–889.

    Article  PubMed  CAS  Google Scholar 

  • Woessner JF, Nagase H (2000) Matrix metalloproteinases and TIMPs. Oxford University Press, Oxford.

    Google Scholar 

  • Xu J, Rodriguez D, Petitclerc E et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1080.

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chen Z, Wang Y et al (2005) Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2. Biochem J 392:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Gurusiddappa S, Rich RL et al (2000) Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J Biol Chem 275:38981–38989.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga IG, Vink J, Dekker SK et al (1993) Role of α3β1 and α2β1 integrins in melanoma cell migration. Melanoma Res 3:435–441.

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13:35–48.

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176.

    PubMed  Google Scholar 

  • Yu WH, Woessner JF, Jr., McNeish JD et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16:307–323.

    Article  PubMed  CAS  Google Scholar 

  • Yu Y-C, Pakalns T, Dori Y et al (1997) Construction of biologically active protein molecular architecture using self-assembling peptide-amphiphiles. Methods Enzymol 289:571–587.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Matrisian LM, Holmbeck K et al (2006) Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-M, Käpylä J, Puranen JS et al (2003) α11β1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 278:7270–7277.

    Article  PubMed  CAS  Google Scholar 

  • Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28:740–749.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Institutes of Health (CA98799, EB000289, and MH078948), the Robert A. Welch Foundation, and the Texas Higher Education Science and Technology Acquisition and Retention (STAR) Award (all to GBF) for support of our research on collagen and metalloproteases and the National Institutes of Health NIDCR (DE14318) COSTAR Program (to JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg B. Fields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lauer, J.L., Fields, G.B. (2010). Collagen in Cancer. In: Bagley, R. (eds) The Tumor Microenvironment. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6615-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6615-5_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6614-8

  • Online ISBN: 978-1-4419-6615-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics