Part of the Cancer Drug Discovery and Development book series (CDD&D)


Fibronectins multifunctionality is reflected by its complex modular molecular design consisting of distict domains which are highly conserved throughout the species. The domains are arranged in specific juxtapositions, sometimes controlled by highly regulated alternative splicing. The implication is that the complex and conserved architecture of fibronectin codes for specific information of high biological relevance. This chapter will review the role of fibronectin for tumor growth and discuss innovative therapeutic interventions.


Migration Toxicity Heparin Sarcoma Polypeptide 


  1. Alessandri G, Chirivi RG, Catellani P et al (1998) Isolation and characterization of human tumor-derived capillary endothelial cells: role of oncofetal fibronectin. Lab Invest 78:127–128PubMedGoogle Scholar
  2. Alessandri G, Chirivi RG, Fiorentini S et al (1999) Phenotypic and functional characterization of tumor-derived microvascular endothelial cells. Clin Exp Metastasis 17:655–662PubMedCrossRefGoogle Scholar
  3. Allport JR, Weissleder R (2003) Murine Lewis Lung Carcinoma-derived endothelium express markers of endothelial activation and requires tumor-specific extracellular matrix in vitro. Neoplasia 5:205–217PubMedGoogle Scholar
  4. Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12:165–175PubMedCrossRefGoogle Scholar
  5. Astrof S, Crowley D, George EL et al (2004) Direct test of potential EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol 24:8662–8670PubMedCrossRefGoogle Scholar
  6. Astrof S, Crowley D, Hynes RO (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311:11–24PubMedCrossRefGoogle Scholar
  7. Balza E, Sassi F, Ventura E et al (2009) A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesis-associated extra type III domain B. Int J Cancer 125: 751–758PubMedCrossRefGoogle Scholar
  8. Berndorff D, Borkowski S, Sieger S et al (2005) Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11:7053s–7063sPubMedCrossRefGoogle Scholar
  9. Berndt A, Borsi L, Xinmei L et al (1998) Evidence of ED-B+ fibronectin synthesis in human tissues by non-radioactive RNA in situ hybridization. Investigation on carcinoma (oral squamous cell and breast cancer) chronic inflammation (rheumatoid synovitis) and fibromatosis (Morbus Dupyten). Histochem Cell Biol 109:249–255PubMedCrossRefGoogle Scholar
  10. Bhaskar V, Zhang D, Fox M et al (2007) A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J Translat Med 5:61CrossRefGoogle Scholar
  11. Bhaskar V, Fox M, Breinberg D et al (2008) Volociximab, a chimeric integrin α5β1 antibody, inhibits the growth of VX2 tumors in rabbits. Invest New Drugs 26:7–12PubMedCrossRefGoogle Scholar
  12. Borsi L, Carnemolla B, Castellani P et al (1987) Monoclonal antibodies in the analysis of fibronectin isoforms generated by alternatively splicing of mRNA pre-cursors in normal and transformed human cells. J Cell Biol 104:595–600PubMedCrossRefGoogle Scholar
  13. Bowditch RD, Hariharan M, Tominna EF et al (1994) Identification of a novel integrin binding site in fibronectin: differential utilization by β3 integrins. J Biol Chem 269:10856–10863PubMedGoogle Scholar
  14. Boyce BF, Yoneda T, Guise TA (1999) Factors regulating the growth of metastatic cancer in the bone. Endocr Relat Cancer 6:333–47PubMedCrossRefGoogle Scholar
  15. Braun S, Pantel K, Muller P et al (2000a) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedCrossRefGoogle Scholar
  16. Braun S, Kentenich C, Janni W et al (2000b) Lack of an effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high risk breast cancer patients. J Clin Oncol 18:80–86PubMedGoogle Scholar
  17. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 42:932–936CrossRefGoogle Scholar
  18. Carnemolla B, Balza E, Siri A et al (1989) A tumor-associated fibronectin isoform generated by alternatively splicing of messenger RNA precursors. J Cell Biol 108:1139–1148PubMedCrossRefGoogle Scholar
  19. Carnemolla B, Neri D, Castellani P et al (1996) Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:379–405CrossRefGoogle Scholar
  20. Castellani P, Siri A, Rosellini C et al (1986) Transformed human cells release different fibronectin variants than do normal cells. J Cell Biol 103:1671–1677PubMedCrossRefGoogle Scholar
  21. Castellani P, Dorcaratto A, Pau A et al (2000) The angiogenesis marker ED-B+fibronectin isoform in intracranial meningioma. Act Neurochir (Wien) 142:277–282CrossRefGoogle Scholar
  22. Castellani P, Borsi L, Carnemolla B et al (2002) Differentiation between high- and low-grade astrocytoma using a recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161:1695–1700PubMedCrossRefGoogle Scholar
  23. Charalabopoulos K, Mittari E, Karakosta A et al (2005) Integrin adhesion molecules and some of their ligands in laryngeal cancer. Exp Oncol 27:86–90PubMedGoogle Scholar
  24. Chen W, Culp LA (1996) Adhesion mediated by fibronectin’s alternatively spliced EDB (EIIB) and its neighboring type III repeats. Exp Cell Res 223:9–19PubMedCrossRefGoogle Scholar
  25. Chen W, Culp LA (1998) Adhesion to fibronectin’s EDB domain induces tyrosine phosphorylation of focal adhesion proteins in Balb/c 3T3 cells. Clin Exp Metastasis 16:30–42PubMedCrossRefGoogle Scholar
  26. Cheresh DA, Stupack DG (2002) Integrin-mediated death: and explanation of the integrin-knockout phenotype? Nat Med 8:193–194PubMedCrossRefGoogle Scholar
  27. Chirivi RG, Puente S, Storgard CM et al (2001) Angiogenesis induced by alternatively spliced oncofetal fibronectin binding to endothelial cell integrin α3β1. Proceedings of the AACR 92nd annual meeting, 24–28 March, Suppl 84, p. LB60Google Scholar
  28. Coltrini D, Ronca R, Belleri M et al (2009) Impact on VEGF-dependent tumor micro-environment on EDB fibronectin expression by subcutaneous human tumor xenografts in nude mice. J Pathol 219:455–462PubMedCrossRefGoogle Scholar
  29. Curran S, Murray GI (1999) Matrix metalloproteinases in tumor invasion and metastasis. J Pathol 189:300–308PubMedCrossRefGoogle Scholar
  30. DeCandia LM, Rogers RJ (1999) Characterization of the expression of the alternative splicing of the ED-A, ED-B, and V-regions of fibronectin mRNA in bovine ovarian follicles and corporea lutea. Reprod Fertil Dev 11:367–377CrossRefGoogle Scholar
  31. DeSimone DW, Norton PA, Hynes RO (1992) Identification and characterization of alternative spliced fibronectin mRNAs expressed in early Xenopus embryos. Dev Biol 149:357–369PubMedCrossRefGoogle Scholar
  32. Dhase OK, Alt V, Zardi L et al (2004) Expression of ED-A+ and ED-B+ fibronectin splice variants in bone. Bone 35:1334–1345CrossRefGoogle Scholar
  33. D’Ovidio M, Mastraccio A, Marzullo A et al (1998) Intratumoral microvessel density and expression of ED-A/ED-B sequences of fibronectin in breast carcinoma. Eur J Cancer 34:1081–1085PubMedCrossRefGoogle Scholar
  34. Dvorak HF, Form DM, Manseau EJ et al (1984) Pathogenesis of desmoplasia. J Natl Cancer Inst 73:1195–1205PubMedGoogle Scholar
  35. Fenig E, Wieder R, Paglin S et al (1997) Basic fibroblast growth factor confers growth inhibition and MAP kinase activation in human breast cancer cells. Clin Cancer res 3:135–142PubMedGoogle Scholar
  36. Ffrench-Consatant C, Van De Water L, Dvorak HF et al (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109:903–914CrossRefGoogle Scholar
  37. Fogerty FJ, Akijama SK, Yamada KM et al (1990) Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha5 beta1) antibodies. J Cell Biol 111:699–708PubMedCrossRefGoogle Scholar
  38. Francis SE, Goh KL, Hodivala-Dilke K et al (2002) Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22:927–933PubMedCrossRefGoogle Scholar
  39. Fu Y, Tank H, Huang Y et al (2009) Unraveling the mysteries of endostatin. IUBMB Life 61:613–626PubMedCrossRefGoogle Scholar
  40. Fukuda T, Yoshida N, Kataoka Y et al (2002) Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 62:5603–5610PubMedGoogle Scholar
  41. Geiger B, Breshadsky A, Pankov R et al (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedCrossRefGoogle Scholar
  42. George EL, Georges-Labouesse EN, Patel-King RS et al (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091PubMedGoogle Scholar
  43. George EL, Baldwin HS, Hynes RO (1997) Fibronectins are essential for heart and blood vessel morphogenesis but dispensable for initial specification of precursor cells. Blood 90:3073–3081PubMedGoogle Scholar
  44. Giovannoni L, Viti F, Zardi L et al (2001) Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening. Nucleic Acids Res 29:E27PubMedCrossRefGoogle Scholar
  45. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–33PubMedGoogle Scholar
  46. Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319PubMedGoogle Scholar
  47. Gutman A, Kornblihtt AR (1987) Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci U S A 87:7179–7182CrossRefGoogle Scholar
  48. Hashimoto-Uoshima M, Dorcaretto A, Nicolo G et al (1997) The alternatively spliced domains EIIIB and EIIIA of human fibronectin affect cell adhesion and spreading. J Cell Sci 110:2271–2280PubMedGoogle Scholar
  49. Heppner KJ, Matrisian LM, Jensen RA et al (1996) Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149:273–282PubMedGoogle Scholar
  50. Hu S, Shivley L, Raubitschek A et al (1996) Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061PubMedGoogle Scholar
  51. Hynes RO (1990) Fibronectins. In: Rich A (ed) Springer series in molecular biology, Springer, New York, pp 1–538Google Scholar
  52. Hynes RO (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  53. Hynes RO, Destree T, Perkis ME et al (1979) Cell surface fibronectin and oncogenic transformation. J Supramol Struct 11:95–104PubMedCrossRefGoogle Scholar
  54. Inufusa H, Nakumura M, Adachi T et al (1995) Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer 75:2802–2808PubMedCrossRefGoogle Scholar
  55. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in angiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  56. Jin H, Aiyer A, Su J et al (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest 116:652–662PubMedCrossRefGoogle Scholar
  57. Jodele S, Chantrain CF, Blavier L et al (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloprotease-9 dependent. Cancer Res 65:3200–3208PubMedGoogle Scholar
  58. Johnson MR, Valentine C, Basilico C et al (1998) FGF signalling activates STAT1 and p21 and inhibits the estrogen response and proliferation of MCF-7 cells. Oncogene 16:2647–2656PubMedCrossRefGoogle Scholar
  59. Johnson KJ, Sage H, Briscoe G et al (1999) The compact conformation of fibronectin is determined by interamolecular ionic interactions. J Biol Chem 274:15473–15497PubMedCrossRefGoogle Scholar
  60. Kaczmarek J, Castellani P, Nicolo G et al (1994) Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 59:11–16PubMedCrossRefGoogle Scholar
  61. Karelina TV, Eisen AZ (1998) Interstitial collagenase and the ED-B oncofetal domain of fibronectin as markers of angiogenesis in human skin tumors. Cancer Detect Prev 22:438–444PubMedCrossRefGoogle Scholar
  62. Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for therapy. Int J Cancer 118:1331–1339PubMedCrossRefGoogle Scholar
  63. Kohn E, Liotta L (1995) Molecular insights into cancer invasion: strategies for prevention and internvention. Cancer Res 55:1856–1862PubMedGoogle Scholar
  64. Korah R, Sysounthone V, Golowa Y et al (2000a) Basic fibroblast growth factor confers to a more differentiated phenotype in MDA-MB-231 human breast cancer cells. Cancer Res 60:733–740PubMedGoogle Scholar
  65. Korah R, Sysounthone V, Scheff E et al (2000b) Intracellular FGF-2 promotes differentiation in T47-D breast cancer cells. Biochem Biophys Res Commun 277:255–260PubMedCrossRefGoogle Scholar
  66. Kornblihtt AR, Vibe-Pedersen K, Baralle FE (1984) Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain. EMBO J 3:221–226PubMedGoogle Scholar
  67. Kosmehl H, Berndt A, Strassburger S et al (1999) Distribution of laminin and fibronectin isoforms in oral squamous cell carcinoma. Br J Cancer 81:1071–1079PubMedCrossRefGoogle Scholar
  68. Kim S, Bell K, Mousa SA et al (2000a) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362PubMedCrossRefGoogle Scholar
  69. Kim S, Harris M, Varner JA (2000b) Regulation of integrin alpha vbeta3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 275:33920–33928PubMedCrossRefGoogle Scholar
  70. Kim S, Bakre M, Yin H et al (2002) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 110:933–941PubMedGoogle Scholar
  71. Labat-Robert J, Birembaut P, Robert L et al (1981) Modification of fibronectin distribution pattern in solid human tumors. Diagn Histopathol 4:236–299Google Scholar
  72. Lejeune FJ, Lienard D, Matter M et al (2006) Efficiency of recombinant human TNF in human cancer therapy. Cancer Immunity 6:6PubMedGoogle Scholar
  73. Lewis JS, Landers RJ, Underwood JC et al (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158PubMedCrossRefGoogle Scholar
  74. Liao YF, Gotwals PJ, Koteliansky VE et al (2002) The EIIIA segment of fibronectin is a ligand for integrins alpha9beta1 and alpha5beta1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 277:14467–14474PubMedCrossRefGoogle Scholar
  75. Littmann AJ, Thornquist MD, White E et al (2004) Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes Control 15:819–827CrossRefGoogle Scholar
  76. Lohi J, Tani T, Laitinen L et al (1995) Tenascin and fibronectin isoforms in human renal cell carcinomas, renal cell carcinoma cell lines and xenografts in nude mice. Int J Cancer 63:442–449PubMedCrossRefGoogle Scholar
  77. Massova I, Kotra LP, Fridman R et al (1998) Matrix metalloproteinases: structures, evolution, and diverisification. FASEB J 12:1075–1095PubMedGoogle Scholar
  78. Matsumoto E, Yoshida T, Kawarada Y et al (1999) Expression of fibronectin isoforms in human breast tissue: production of extra domain A+/extra domain B+ by cancer cells and extra domain A+ by stromal cells. Jpn J Cancer Res 90:320–325PubMedCrossRefGoogle Scholar
  79. Matuskova J, Chauhan AK, Cambien B et al (2006) Decreased plasma fibronectin leads to delayed thrombus growth in injured arterioles. Arterioscler Thromb Vasc Biol 26:1391–1396PubMedCrossRefGoogle Scholar
  80. McDonald JA, Quade BJ, Brockelmann TJ et al (1987) Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem 262:2957–2967PubMedGoogle Scholar
  81. McLesky SW, Ding IYF, Lipman ME et al (1994) MDA-MB-134 breast cancer carcinoma cells overexpress fibroblast growth factor (FGF) receptors and are growth-inhibited by FGF ligands. Cancer Res 54:523–530Google Scholar
  82. Mendoza M, Khana C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41:1452–1462PubMedCrossRefGoogle Scholar
  83. Menrad A, Menssen HD (2005) ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 9:491–500PubMedCrossRefGoogle Scholar
  84. Menrad A, Rosewicz S, Wagner K et al (2004a) Therapeutic efficacy of the recombinant fusion protein L19-IL2 in orthotopic animal models for pancreatic and hepatocellular carcinoma. Proceedings of the 21st international conference of advances in the application of monoclonal antibodies in clinical oncology, Suppl. p15Google Scholar
  85. Menrad A, Cao YJ, Redlitz A et al (2004b) ED-B fibronectin as a target for antibody based therapeutics and the evaluation of phage angiomics for target identification and validation. Proceedings of the strategic research institute conference on vascular targeting agents, 8–9 November, Suppl. P1Google Scholar
  86. Menrad A, Cao YJ, Redlitz A et al (2004c) Molecular and functional characterization of ED-B fibronectin selective function blocking antibodies and the evaluation of phage angiomics for target identification and validation. Human Antibodies 13:33Google Scholar
  87. Mhawech P, Dulguerov P, Assalym M et al (2005) ED-B fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncology 41:82–88PubMedCrossRefGoogle Scholar
  88. Midulla M, Verma R, Pignatelli M et al (2000) Source of oncofetal ED-B-containing fibronectin: implication of production by both tumor and endothelial cells. Cancer Res 60:164–169PubMedGoogle Scholar
  89. Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4:E83–E90PubMedCrossRefGoogle Scholar
  90. Morla A, Zhang Z, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196PubMedCrossRefGoogle Scholar
  91. Moro L, Colombi M, Molinari-Tosatti MP et al (1992) Study of fibronectin mRNA in human laryngeal and ectocervical carcinomas by in situ hybridization and mage analysis. Int J Cancer 51:1–6CrossRefGoogle Scholar
  92. Mueller MM, Fusenig NE (2004) Friends and foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRefGoogle Scholar
  93. Nagai T, Yamakawa N, Aota S et al (1991) Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. J Cell Biol 114:1295–1305PubMedCrossRefGoogle Scholar
  94. Neri D, Carnemolla B, Nissim A et al (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275PubMedCrossRefGoogle Scholar
  95. Niwa Y, Akamatsu H, Niwa H et al (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 7:285–289PubMedGoogle Scholar
  96. Norton PA, Hynes RO (1987) Alternative splicing of chicken fibronectin in embryos and in normal and transformed cells. Mol Cell Biol 7:4297–4307PubMedGoogle Scholar
  97. Ohnishi T, Hiraga S, Izumoto S et al (1998) Role of fibronectin-stimulated tumor cell migration in glioma invasion in vivo: clinical significance of fibronectin and fibronectin receptor expressed in human glioma tissues. Clin Exp Metastasis 16:729–741PubMedCrossRefGoogle Scholar
  98. Okamura Y, Watari M, Jerud ES et al (2001) The extradomain A of fibronectin activates Toll-like receptor 4. J Biol Chem 267:10229–10233CrossRefGoogle Scholar
  99. Olson MW, Toth M, Gervasi DC et al (1998) High affinity binding of latent matrix metalloproteinase-9 on the α2(IV) chain of collagen IV. J Biol Chem 273:10672–10681PubMedCrossRefGoogle Scholar
  100. Orr FW, Lee J, Duivenvoorden WCM et al (2000) Patophysiologic interactions in skeletal metastasis. Cancer 88 (Suppl 12):2912–2918PubMedCrossRefGoogle Scholar
  101. Oyama F, Hirohashi S, Shimosato Y et al (1989) Deregulation of alternative splicing of fibronectin pre-mRNA in malignant human liver tumors. J Biol Chem 264:10331–10334PubMedGoogle Scholar
  102. Oyama F, Hirohashi S, Shimosato Y et al (1990) Oncodevelopmental regulation of the alternative splicing of fibronectin pre-messenger RNA in human lung tissue. Cancer Res 50:1075–1078PubMedGoogle Scholar
  103. Pini A, Viti F, Santucci A et al (1998) Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776PubMedCrossRefGoogle Scholar
  104. Plantefaber LC, Hynes RO (1989) Changes in integrin receptors on oncogenically transformed cells. Cell 56:281–290PubMedCrossRefGoogle Scholar
  105. Pujuguet P, Hammann A, Moutet M et al (1996) Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. Am J Pathol 148:579–592PubMedGoogle Scholar
  106. Pupa SM, Menard S, Forti S et al (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267PubMedCrossRefGoogle Scholar
  107. Qian F, Zhang ZC, Wu XF et al (2005) Interaction between integrin alpha5 and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Comm 333:1269–1275PubMedCrossRefGoogle Scholar
  108. Rahman S, Patel Y, Murray J et al (2005) Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6:1–17CrossRefGoogle Scholar
  109. Ricart AD, Tolcher AW, Liu G et al (2008) Clin Cancer Res 14:7924–7929PubMedCrossRefGoogle Scholar
  110. Ronnov-Jenssen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast:importance of the stromal reaction. Physiol Rev 76:69–125Google Scholar
  111. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497PubMedCrossRefGoogle Scholar
  112. Saad S, Bendall LJ, James A et al (2000) Coculture of breast cancer cells and bone marrow fibroblasts induce expression of the metalloproteinase MMP2. Breast Cancer Res Treat 63:105–115PubMedCrossRefGoogle Scholar
  113. Saad S, Gottlieb DJ, Kenneth F et al (2002) Cancer cell associated fibronectin induces release of matrix metalloproteinase-2 from normal fibroblasts. Cancer Res 62:283–289PubMedGoogle Scholar
  114. Santimaria M, Moscatelli G, Viale GL et al (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579PubMedGoogle Scholar
  115. Sato T, Yamochi T, Yamochi T, Aytac U et al (2005) CD26 regulates p38 mitogen-activated protein kinase-dependent phosphorylation of integrin beta1, adhesion to extracellular matrix, and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299. Cancer Res 65:6950–6956PubMedCrossRefGoogle Scholar
  116. Sauer S, Erba PA, Petrini M et al (2009) Expression of oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19-SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113:2265–2274PubMedCrossRefGoogle Scholar
  117. Scarpino S, Stoppacciaro A, Pellegrini C et al (1999) Expression of EDA/EDB isoforms of fibronectin in papillary carcinoma of the thyroid. J Pathol 188:163–167PubMedCrossRefGoogle Scholar
  118. Schliemann C, Wiedmer A, Pedretti M et al (2009) Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk Res 33:1718–1722PubMedCrossRefGoogle Scholar
  119. Schor AM, Schor SL (2009) Angiogenesis and tumor progression: migration-stimulating factor as a novel target for clinical intervention. Eye 1–9Google Scholar
  120. Schwarzbauer JE, Tamkun JW, Lemischka IR et al (1983) Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35:421–431PubMedCrossRefGoogle Scholar
  121. Schwarzbauer JE, Patel RS, Fonda D et al (1987) Multiple sites of alternative splicing of the rat fibronectin gene transcript. EMBO J 6:2573–2580PubMedGoogle Scholar
  122. Sechler JL, Schwarzbauer JE (1997) Coordinated regulation of fibronectin fibril assembly and actin stress fiberformation. Cell Adhes Commun 4:413–424PubMedCrossRefGoogle Scholar
  123. Shinde AV, Bystroff C, Wang C et al (2008) Identification of the peptide sequence within the EIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem 283:2858–2870PubMedCrossRefGoogle Scholar
  124. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166PubMedCrossRefGoogle Scholar
  125. Steffensen B, Bigg HF, Overall CM (1998) The involvement of the fibronectin type II-like modules of human gelatinase A in the cell surface localization and activation. J Biol Chem 273:20622–20628PubMedCrossRefGoogle Scholar
  126. Stetler-Stevenson W, Azanavoorian S, Liotta L (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573PubMedCrossRefGoogle Scholar
  127. Sudhakar A, Boosani CS (2008) Inhibition of tumor angiogenesis by tumstatin: insights into signalling mechanisms and implications in cancer regression. Pharm Res 25:2731–2739PubMedCrossRefGoogle Scholar
  128. Sudhakar A, Sugimoto H, Yang C et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc Natl Acad Sci U S A 100:4766–4771PubMedCrossRefGoogle Scholar
  129. Takahashi S, Leiss M, Moser M et al (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–178PubMedCrossRefGoogle Scholar
  130. Taverna D, Hynes RO (2001) Reduced blood vessel formation and tumor growth in alpha5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 61:5255–5261PubMedGoogle Scholar
  131. Tijink BM, Neri D, Leemans CR et al (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47:1127–1135PubMedGoogle Scholar
  132. Trefzer U, Chen Y, Herberth G et al (2006) The monoclonal antibody SM5-1 recognizes a fibronectin varian which is widely expressed in melanoma. BMC Cancer 6:1–12CrossRefGoogle Scholar
  133. Ueno T, Toi M, Saji H et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 8:3282–3289Google Scholar
  134. Umezawa K, Kornblihtt AR, Baralle FE (1986) Isolation and characterization of cDNA clones for human liver fibronectin. FEBS Lett 186:31–34CrossRefGoogle Scholar
  135. Vaday GG, Lider O (2000) Extracellular matrix moieties, cytokines, and enzymes: dynamics effects on immune cell behaviour and inflammation. J Leukoc Biol 67:149–159PubMedGoogle Scholar
  136. Villa A, Trachsel E, Kaspar M et al (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasvulature in vivo. Int J Cancer 122:2405–2413PubMedCrossRefGoogle Scholar
  137. Wagner K, Schulz P, Scholz A et al (2008) The targeted immunocytokine L19-IL2 efficiently inhibits the growth of orthotopic pancreas cancer. Clin Cancer Res 14:4951–4960PubMedCrossRefGoogle Scholar
  138. Wang Q, Maloof P, Wang H et al (1988) Basic fibroblast growth factor (bFGF) downregulates Bcl-2 and promotes apoptosis in MCF-7 human breast cancer cells. Exp Cell Res 238:177–187CrossRefGoogle Scholar
  139. Wang H, Rubin M, Fenig E et al (1997) Basic FGF causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res 57:1750–1757PubMedGoogle Scholar
  140. Wernert N (1997) The multiple roles of tumor stroma. Virchows Arch 430:433–443PubMedCrossRefGoogle Scholar
  141. Wijelath ES, Murray J, Rahman S et al (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biologic activity. Circ Res 91:25–31PubMedCrossRefGoogle Scholar
  142. Wijelath ES, Rahman S, Namekata M et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by singular growth factor/matrix protein synergism. Circ Res 99:853–860PubMedCrossRefGoogle Scholar
  143. Yamashiro S, Takeya M, Nishi T et al (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplant rat tumors. Am J Pathol 145:856–67PubMedGoogle Scholar
  144. Yang JT, Rayburn H, Hynes RO (1994) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105Google Scholar
  145. Yi M, Ruoslahti E (2001) A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A 98:620–624PubMedCrossRefGoogle Scholar
  146. Yu AE, Hewitt RE, Kleiner DE et al (1996) Molecular regulationof cellular invasion-role of gelatinase A and TIMP2. Biochem Cell Biol 74:823–831PubMedCrossRefGoogle Scholar
  147. Zamir E, Katz M, Posen Y et al (2000) Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2:191–196PubMedCrossRefGoogle Scholar
  148. Zheng Y, Ritzenthaler D, Roman J et al (2007) Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol 37:681–690PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Antibody Therapeutics Genzyme Europe ResearchCambridgeUK

Personalised recommendations