Macrophages in the Tumor Microenvironment

Part of the Cancer Drug Discovery and Development book series (CDD&D)


Solid tumors consist of neoplastic cells, non-malignant stromal cells and migratory haematopoietic cells. Complex interactions between the cell types in this microenvironment regulate tumor growth, progression, metastasis and angiogenesis. There is also strong evidence that this microenvironment is inflammatory and that activation of the innate immune system plays a role in the progression of cancer. One such inflammatory cell that has the potential to promote cancer progression is the macrophage. There is a growing body of pre-clinical and clinical evidence associating abundance of tumor-associated macrophages (TAM) with poor prognosis. According to Condeelis and Pollard, TAM are obligate partners for malignant cell migration, invasion and metastases in many different cancers. These conclusions are based not only on association studies, but also on experiments that show ablation of macrophage function, or their infiltration into experimental tumors, inhibits growth and metastases.


Vascular Endothelial Growth Factor Tumor Microenvironment Lewis Lung Carcinoma Lewis Lung Carcinoma Cell Line Infiltrate Natural Killer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H, Lohr GW (1990) Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res 50:7450PubMedGoogle Scholar
  2. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539PubMedCrossRefGoogle Scholar
  3. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254PubMedCrossRefGoogle Scholar
  4. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-{kappa}B and enhanced IRF-3/STAT1 activation). Blood 107:2112PubMedCrossRefGoogle Scholar
  5. Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180:2011PubMedGoogle Scholar
  6. Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160PubMedCrossRefGoogle Scholar
  7. Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL (2006) Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 176:309PubMedGoogle Scholar
  8. Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196:204PubMedCrossRefGoogle Scholar
  9. Chen GG, Chu YS, Chak EC, Leung BC, Poon WS (2002) Induction of apoptosis in glioma cells by molecules released from activated macrophages. J Neurooncol 57:179PubMedCrossRefGoogle Scholar
  10. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105:487CrossRefGoogle Scholar
  11. Coley WB (1906) Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus. Am J Med Sci 131:375Google Scholar
  12. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562PubMedCrossRefGoogle Scholar
  13. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211PubMedCrossRefGoogle Scholar
  14. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91PubMedCrossRefGoogle Scholar
  15. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991PubMedCrossRefGoogle Scholar
  16. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13:1472PubMedCrossRefGoogle Scholar
  17. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23PubMedCrossRefGoogle Scholar
  18. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953PubMedCrossRefGoogle Scholar
  19. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285PubMedCrossRefGoogle Scholar
  20. Hallam S, Escorcio-Correia M, Soper R, Schultheiss A, Hagemann T (2009) Activated macrophages in the tumour microenvironment-dancing to the tune of TLR and NF-kappaB.J Pathol 219:143PubMedCrossRefGoogle Scholar
  21. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-{kappa}B. J Exp Med 205:1261PubMedCrossRefGoogle Scholar
  22. Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE (2009) Regulation of macrophage function in tumors: the multifaceted role of NF-{kappa}B. Blood 113:3139PubMedCrossRefGoogle Scholar
  23. Hennemann B, Beckmann G, Eichelmann A, Rehm A, Andreesen R (1998) Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon gamma and lipopolysaccharide. Cancer Immunol Immunother 45:250PubMedCrossRefGoogle Scholar
  24. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289PubMedCrossRefGoogle Scholar
  25. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823PubMedCrossRefGoogle Scholar
  26. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387PubMedCrossRefGoogle Scholar
  27. Khazaie K, von Boehmer H (2006) The impact of CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 16:124PubMedCrossRefGoogle Scholar
  28. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527PubMedCrossRefGoogle Scholar
  29. Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S, Kim Y, Luo J-L, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102PubMedCrossRefGoogle Scholar
  30. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iguchi H, Shirouzu K, Takamori S, Kuwano M, Ono M (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98:2009PubMedCrossRefGoogle Scholar
  31. Koestler TP, Johnson WJ, Rieman D, Dalton BJ, Greig RG, Poste G (1987) Differential expression of murine macrophage-mediated tumor cytotoxicity induced by interferons. Cancer Res 47:2804PubMedGoogle Scholar
  32. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880PubMedGoogle Scholar
  33. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625PubMedGoogle Scholar
  34. Lepique AP, Daghastanli KRP, Cuccovia IM, Villa LL (2009) HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res 15:4391PubMedCrossRefGoogle Scholar
  35. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605PubMedCrossRefGoogle Scholar
  36. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727PubMedCrossRefGoogle Scholar
  37. Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue X-N, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238PubMedCrossRefGoogle Scholar
  38. Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS (1999) Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 163:6251PubMedGoogle Scholar
  39. Lum HD, Buhtoiarov IN, Schmidt BE, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2006) In vivo CD40 ligation can induce T cell-independent antitumor effects that involve macrophages. J Leukoc Biol 79:1181PubMedCrossRefGoogle Scholar
  40. Maeda S, Kamata H, Luo J-L, Leffert H, Karin M (2005) IKK[beta] couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977PubMedCrossRefGoogle Scholar
  41. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549PubMedCrossRefGoogle Scholar
  42. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436PubMedCrossRefGoogle Scholar
  43. Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175:6257PubMedGoogle Scholar
  44. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618PubMedCrossRefGoogle Scholar
  45. Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G-I, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335PubMedGoogle Scholar
  46. Perkins ND (2007) Integrating cell-signalling pathways with NF-[kappa]B and IKK function. Nat Rev Mol Cell Biol 8:49PubMedCrossRefGoogle Scholar
  47. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71PubMedCrossRefGoogle Scholar
  48. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-[kgr]B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1[agr]. Nature 453:807PubMedCrossRefGoogle Scholar
  49. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A (2006) p50 nuclear factor-{kappa}B overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432PubMedCrossRefGoogle Scholar
  50. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155PubMedCrossRefGoogle Scholar
  51. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol jlb.0609385Google Scholar
  52. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol jlb.0209073Google Scholar
  53. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1{alpha} and HIF-2{alpha} in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411PubMedCrossRefGoogle Scholar
  54. Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppa S (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 13:5784PubMedCrossRefGoogle Scholar
  55. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJC, John S, Taams LS (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446PubMedCrossRefGoogle Scholar
  56. Tsai C-S, Chen F-H, Wang C-C, Huang H-L, Jung S-M, Wu C-J, Lee C-C, McBride WH, Chiang C-S, Hong J-H (2007) Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phy 68:499CrossRefGoogle Scholar
  57. Venneri MA, Palma MD, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R, Doglioni C, Naldini L (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276PubMedCrossRefGoogle Scholar
  58. Wu Q-L, Buhtoiarov IN, Sondel PM, Rakhmilevich AL, Ranheim EA (2009) Tumoricidal effects of activated macrophages in a mouse model of chronic lymphocytic leukemia. J Immunol 182:6771PubMedCrossRefGoogle Scholar
  59. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022PubMedCrossRefGoogle Scholar
  60. Wyckoff JB, Wang Y, Lin EY, Li J-f, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct Visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649PubMedCrossRefGoogle Scholar
  61. Zhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L (2009) Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 125:1640PubMedCrossRefGoogle Scholar
  62. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, Speiser D, Cerottini J-C, Romero P, Pittet MJ (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64:2865PubMedCrossRefGoogle Scholar
  63. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Barts and The London School of Medicine and DentistryInstitute of CancerLondonUK

Personalised recommendations