Advertisement

Compartmentalization of TNF-Receptor 1 Signaling: TNF-R1-Associated Caspase-8 Mediates Activation of Acid Sphingomyelinase in Late Endosomes

  • Uwe Bertsch
  • Bärbel Edelmann
  • Vladimir Tchikov
  • Supandi Winoto-Morbach
  • Stefan Schütze
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)

Abstract

Tumor necrosis factor-α (TNF-α) is known as a highly pleiotropic cytokine. Stimulation of TNF-receptor 1 (TNF-R1) by TNF-α elicits the transduction of intracellular signals that on the one side promote cell death by apoptosis. However, TNF-R1 may also transduce non-apoptotic signals that lead to inflammatory responses through the activation of the transcription factor nuclear factor-κB (NF-κB) or to cell proliferation through activation of the mitogen-activated protein kinase (MAPK) cascade. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor endocytosis and intracellular receptor trafficking in selective transmission of signals, which either promote apoptosis or rather cell survival. Although internalization of cell surface receptors has traditionally been regarded as a means to shut down signaling via receptor degradation, there is now good evidence for an active role of many internalized surface receptors in the continuation of signal transmission along the endocytic pathway. Thus endocytosis may control the quality, intensity, duration, and spatial distribution of signaling events. TNF-induced apoptotic signals lead to an enhanced generation of ceramide by the enzyme sphingomyelin phosphodiesterase 1 (SMPD1, also known as acid sphingomyelinase [A-SMase]). Since TNF-triggered activation of A-SMase is linked to the death domain of TNF-receptor 1 (TNF-R1) and since the death domain adapter proteins FADD and caspase-8 are recruited during internalization of TNF-R1 to endosomes (TNF-receptosomes), we examined the possibility that A-SMase could be activated by caspase-8 within this compartment. Since we observed TNF-induced proteolytic processing and activation of pro-A-SMase that depended on the presence of caspase-8, we propose that activation of A-SMase within TNF-receptosomes requires activation of caspase-8 and probably further downstream proteases. Thus the fusion of internalized TNF-receptosomes with trans-Golgi vesicles containing the proform of A-SMase should be recognized as a novel mechanism to transduce death signals along the endocytic route.

Keywords

Jurkat Cell Death Domain Sphingomyelin Phosphodiesterase Confocal Laser Scanning Microscopy Immunofluorescence Bulky Hydrophobic Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the Germany Research Foundation (DFG) SCHU733/7-1, SCHU733/8-1, the Collaborative Research Center SFB 415, the DFG Sphingolipid Priority Program SPP 1267, and by the Schleswig-Holstein Cluster of Excellence “Inflammation at Interfaces” given to S.S.

References

  1. 1.
    Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME, Meng XW, Kohno S, Shah VH, Kaufmann SH, McNiven MA, Gores GJ (2009) Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology 136:2365–2376CrossRefPubMedGoogle Scholar
  2. 2.
    Algeciras-Schimnich A, Peter ME (2003) Actin dependent CD95 internalization is specific for Type I cells. FEBS Lett 546:185–188CrossRefPubMedGoogle Scholar
  3. 3.
    Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22:207–220CrossRefPubMedGoogle Scholar
  4. 4.
    Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193CrossRefPubMedGoogle Scholar
  5. 5.
    Brenner B, Ferlinz K, Grassme H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37CrossRefPubMedGoogle Scholar
  6. 6.
    Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R (1994) Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180:1547–1552CrossRefPubMedGoogle Scholar
  7. 7.
    De Maria R, Rippo MR, Schuchman EH, Testi R (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 187:897–902CrossRefPubMedGoogle Scholar
  8. 8.
    Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429CrossRefPubMedGoogle Scholar
  9. 9.
    Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625CrossRefPubMedGoogle Scholar
  10. 10.
    Ermolaeva MA, Michallet MC, Papadopoulou N, Utermöhlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9:1037–1046CrossRefPubMedGoogle Scholar
  11. 11.
    Feig C, Tchikov V, Schütze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26:221–231CrossRefPubMedGoogle Scholar
  12. 12.
    Fanzo JC, Lynch MP, Phee H, Hyer M, Cremesti A, Grassme H, Norris JS, Coggeshall KM, Rueda BR, Pernis AB, Kolesnick R, Gulbins E (2003) CD95 rapidly clusters in cells of diverse origins. Cancer Biol Ther 2:392–395PubMedGoogle Scholar
  13. 13.
    Garcia-Ruiz C, Colell A, Mari M, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2003) Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111:197–208PubMedGoogle Scholar
  14. 14.
    Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54CrossRefPubMedGoogle Scholar
  15. 15.
    Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470CrossRefPubMedGoogle Scholar
  16. 16.
    Grullich C, Sullards MC, Fuks Z, Merrill AH Jr, Kolesnick R (2000) CD95(Fas/APO-1) signals ceramide generation independent of the effector stage of apoptosis. J Biol Chem 275:8650–8656CrossRefPubMedGoogle Scholar
  17. 17.
    Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541CrossRefPubMedGoogle Scholar
  18. 18.
    Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Krönke M, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263CrossRefPubMedGoogle Scholar
  19. 19.
    Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schütze S (2004) Cathepsin D links TNF induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563CrossRefPubMedGoogle Scholar
  20. 20.
    Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254CrossRefPubMedGoogle Scholar
  21. 21.
    Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM (1997) Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16:6200–6208CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996a) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387–396CrossRefPubMedGoogle Scholar
  23. 23.
    Hsu H, Shu HB, Pan MG, Goeddel DV (1996b) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308CrossRefPubMedGoogle Scholar
  24. 24.
    Jin Z, El Deiry WS (2006) Distinct signaling pathways in TRAIL-versus tumor necrosis factor induced apoptosis. Mol Cell Biol 26:8136–8148CrossRefPubMedGoogle Scholar
  25. 25.
    Kull FC Jr, Cuatrecasas P (1981) Possible requirement of internalization in the mechanism of in vitro cytotoxicity in tumor necrosis serum. Cancer Res 41:4885–4890Google Scholar
  26. 26.
    Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653CrossRefPubMedGoogle Scholar
  27. 27.
    Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signaling. Nat Rev Mol Cell Biol 6:112–126CrossRefPubMedGoogle Scholar
  28. 28.
    Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schütze S, Peter ME, Chan AC (2006) The role of receptor internalization in CD95 signaling. EMBO J 24:1009–1023CrossRefGoogle Scholar
  29. 29.
    Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, Garfield S, Conze D, El-Deiry WS, Schütze S, Srinivasula SM (2008) CARP-2 is an endosome-associated ubiquitin protein ligase for RIP and regulates TNF-induced NF-B activation. Curr Biol 18:641–649CrossRefPubMedGoogle Scholar
  30. 30.
    Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663CrossRefPubMedGoogle Scholar
  31. 31.
    Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576CrossRefPubMedGoogle Scholar
  32. 32.
    Mahul-Mellier AL, Strappazzon F, Petiot A, Chatellard-Causse C, Torch S, Blot B, Freeman K, Kuhn L, Garin J, Verna JM, Fraboulet S, Sadoul R (2008) Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol 283:34954–34965Google Scholar
  33. 33.
    Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612CrossRefPubMedGoogle Scholar
  34. 34.
    McPherson PS, Kay BK, Hussain NK (2001) Signaling on the endocytic pathway. Traffic 2:375–384CrossRefPubMedGoogle Scholar
  35. 35.
    Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406CrossRefPubMedGoogle Scholar
  36. 36.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305CrossRefPubMedGoogle Scholar
  37. 37.
    Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complex. Cell 114:181–190CrossRefPubMedGoogle Scholar
  38. 38.
    Monney L, Olivier R, Otter I, Jansen B, Poirier GG, Borner C (1998) Role of an acidic compartment in tumor-necrosis-factor-alpha-induced production of ceramide, activation of caspase-3 and apoptosis. Eur J Biochem 251:295–303CrossRefPubMedGoogle Scholar
  39. 39.
    Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939CrossRefPubMedGoogle Scholar
  40. 40.
    Neumeyer J, Hallas C, Merkel O, Winoto-Morbach S, Jakob M, Thon L, Adam D, Schneider-Brachert W, Schütze S (2006) TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Exp Cell Res 312:2142–2153CrossRefPubMedGoogle Scholar
  41. 41.
    Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194CrossRefPubMedGoogle Scholar
  42. 42.
    Pastorino JG, Simbula G, Yamamoto K, Glascott PA Jr, Rothman RJ, Farber JL (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271:29792–29798CrossRefPubMedGoogle Scholar
  43. 43.
    Pobezinskaya YL, Kim YS, Choksi S, Morgan MJ, Li T, Liu C, Liu Z (2008) The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 9:1047–1054CrossRefPubMedGoogle Scholar
  44. 44.
    Reinehr R, Sommerfeld A, Keitel V, Grether-Beck S, Haussinger D (2008) Amplification of CD95 activation by caspase 8-induced endosomal acidification in rat hepatocytes. J Biol Chem 283:2211–2222CrossRefPubMedGoogle Scholar
  45. 45.
    Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434CrossRefPubMedGoogle Scholar
  46. 46.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687CrossRefPubMedGoogle Scholar
  47. 47.
    Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428CrossRefPubMedGoogle Scholar
  48. 48.
    Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C, Kruse ML, Groitl P, Lehn A, Hildt E, Held-Feindt J, Dobner T, Kabelitz D, Krönke M, Schütze S (2006) Inhibition of TNF receptor 1 internalization by adenovirus 14.7 K as a novel immune escape mechanism. J Clin Invest 116:2901–2913CrossRefPubMedGoogle Scholar
  49. 49.
    Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krönke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776CrossRefPubMedGoogle Scholar
  50. 50.
    Schütze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, Heinrich M, Wickel M, Krönke M (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274:10203–10212CrossRefPubMedGoogle Scholar
  51. 51.
    Schütze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNF-R1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9:655–662CrossRefPubMedGoogle Scholar
  52. 52.
    Schütze S, Tchikov V (2008) Immunomagnetic isolation of TNF-receptosomes. Methods Enzymol 442:101–123CrossRefPubMedGoogle Scholar
  53. 53.
    Schwandner R, Wiegmann K, Bernardo K, Kreder D, Krönke M (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273:5916–5922CrossRefPubMedGoogle Scholar
  54. 54.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  55. 55.
    Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614CrossRefPubMedGoogle Scholar
  56. 56.
    Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523CrossRefPubMedGoogle Scholar
  57. 57.
    Teis D, Huber LA (2003) The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 60:2020–2033CrossRefPubMedGoogle Scholar
  58. 58.
    Thon L, Mathieu S, Kabelitz D, Adam D (2006) The murine TRAIL receptor signals caspase independent cell death through ceramide. Exp Cell Res 312:3808–3821CrossRefPubMedGoogle Scholar
  59. 59.
    Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–1015CrossRefPubMedGoogle Scholar
  60. 60.
    Wiegmann K, Schwandner R, Krut O, Yeh WC, Mak TW, Krönke M (1999) Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J Biol Chem 274:5267–5270CrossRefPubMedGoogle Scholar
  61. 61.
    Woo CH, Kim TH, Choi JA, Ryu HC, Lee JE, You HJ, Bae YS, Kim JH (2006) Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 351:972–978CrossRefPubMedGoogle Scholar
  62. 62.
    Zeidan YH, Hannun YA (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 282:11549–11561CrossRefPubMedGoogle Scholar
  63. 63.
    Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, Lenardo M (2006) Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 26:3505–3513CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Uwe Bertsch
    • 1
  • Bärbel Edelmann
    • 1
  • Vladimir Tchikov
    • 1
  • Supandi Winoto-Morbach
    • 1
  • Stefan Schütze
    • 1
  1. 1.Institute of Immunology, University Hospital of Schleswig-HolsteinKielGermany

Personalised recommendations