The Contribution of TNFα to Synaptic Plasticity and Nervous System Function

  • David Stellwagen
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)


The immune and nervous systems are generally thought to operate independently; however, evidence is accumulating proving that they interact in a variety of important ways. Recently, it has become clear that many immune molecules are used constitutively by the nervous system as signaling molecules, and disruption of this signaling through immunological challenge can contribute to neuronal dysfunction [1, 2]. One such example would be the pro-inflammatory cytokine tumor necrosis factor α (TNFα), principally known for its role in the inflammatory signaling cascade of immune cells.


Amyotrophic Lateral Sclerosis AMPA Receptor Excitatory Synapse Excitotoxic Cell Death Homeostatic Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vitkovic L, Maeda S, Sternberg E (2001) Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9:295–312CrossRefPubMedGoogle Scholar
  2. 2.
    Pan W et al (1997) Tumor necrosis factor-alpha: a neuromodulator in the CNS. Neurosci Biobehav Rev 21:603–613CrossRefPubMedGoogle Scholar
  3. 3.
    Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA (2002) Tumor necrosis factor-alpha in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J Neurovirol 8:611–624CrossRefPubMedGoogle Scholar
  4. 4.
    Vitkovic L et al (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5:604–615CrossRefPubMedGoogle Scholar
  5. 5.
    Beattie EC et al (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285CrossRefPubMedGoogle Scholar
  6. 6.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefPubMedGoogle Scholar
  7. 7.
    Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol 17:318–324CrossRefPubMedGoogle Scholar
  8. 8.
    Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323CrossRefPubMedGoogle Scholar
  9. 9.
    Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3(Suppl):1178–1183CrossRefPubMedGoogle Scholar
  10. 10.
    Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107CrossRefPubMedGoogle Scholar
  11. 11.
    Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896CrossRefPubMedGoogle Scholar
  12. 12.
    Burrone J, Murthy VN (2003) Synaptic gain control and homeostasis. Curr Opin Neurobiol 13:560–567CrossRefPubMedGoogle Scholar
  13. 13.
    Burrone J, O’Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:414–418CrossRefPubMedGoogle Scholar
  14. 14.
    Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059CrossRefPubMedGoogle Scholar
  15. 15.
    Shepherd JD et al (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–484CrossRefPubMedGoogle Scholar
  16. 16.
    Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–474CrossRefPubMedGoogle Scholar
  17. 17.
    Chen N, Napoli JL (2008) All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22:236–245CrossRefPubMedGoogle Scholar
  18. 18.
    Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:308–320CrossRefPubMedGoogle Scholar
  19. 19.
    Seeburg DP, Pak D, Sheng M (2005) Polo-like kinases in the nervous system. Oncogene 24:292–298CrossRefPubMedGoogle Scholar
  20. 20.
    Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228CrossRefPubMedGoogle Scholar
  21. 21.
    Kwak S, Weiss JH (2006) Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 16:281–287CrossRefPubMedGoogle Scholar
  22. 22.
    Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16:1982–1989PubMedGoogle Scholar
  23. 23.
    Ogoshi F et al (2005) Tumor necrosis-factor-alpha (TNF-alpha) induces rapid insertion of Ca2+-permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp Neurol 193:384–393CrossRefPubMedGoogle Scholar
  24. 24.
    Washburn MS, Numberger M, Zhang S, Dingledine R (1997) Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17:9393–9406PubMedGoogle Scholar
  25. 25.
    Mainen ZF, Jia Z, Roder J, Malinow R (1998) Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci 1:579–586CrossRefPubMedGoogle Scholar
  26. 26.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  27. 27.
    Isaac JT, Ashby M, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871CrossRefPubMedGoogle Scholar
  28. 28.
    Lai C et al (2006) Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J Neurosci 26:11798–11806CrossRefPubMedGoogle Scholar
  29. 29.
    Spalloni A et al (2004) Cu/Zn-superoxide dismutase (GLY93-->ALA) mutation alters AMPA receptor subunit expression and function and potentiates kainate-mediated toxicity in motor neurons in culture. Neurobiol Dis 15:340–350CrossRefPubMedGoogle Scholar
  30. 30.
    Hartmann B et al (2004) The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44:637–650CrossRefPubMedGoogle Scholar
  31. 31.
    Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 9:636–641CrossRefPubMedGoogle Scholar
  32. 32.
    Plant K et al (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9:602–604CrossRefPubMedGoogle Scholar
  33. 33.
    Bagal AA, Kao JP, Tang CM, Thompson SM (2005) Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci USA 102:14434–14439CrossRefPubMedGoogle Scholar
  34. 34.
    Ju W et al (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253CrossRefPubMedGoogle Scholar
  35. 35.
    Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47:725–737CrossRefPubMedGoogle Scholar
  36. 36.
    Sutton MA et al (2006) Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125:785–799CrossRefPubMedGoogle Scholar
  37. 37.
    Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG (2009) Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J Neurosci 29:6479–6489CrossRefPubMedGoogle Scholar
  38. 38.
    Auld DS, Robitaille R (2003) Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40:389–400CrossRefPubMedGoogle Scholar
  39. 39.
    Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193CrossRefPubMedGoogle Scholar
  40. 40.
    Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394CrossRefPubMedGoogle Scholar
  41. 41.
    Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216CrossRefPubMedGoogle Scholar
  42. 42.
    Christopherson KS et al (2005) Thrombospondins are astrocyte–secreted proteins that promote CNS synaptogenesis. Cell 120:421–433CrossRefPubMedGoogle Scholar
  43. 43.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661; [Comment In: Science. 2001 Jan 26;291(5504):569–70 UI: 21121053]CrossRefPubMedGoogle Scholar
  44. 44.
    Bains JS, Oliet SH (2007) Glia: they make your memories stick! Trends Neurosci 30:417–424CrossRefPubMedGoogle Scholar
  45. 45.
    Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680CrossRefPubMedGoogle Scholar
  46. 46.
    Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109CrossRefPubMedGoogle Scholar
  47. 47.
    Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217CrossRefPubMedGoogle Scholar
  48. 48.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31CrossRefPubMedGoogle Scholar
  49. 49.
    Hestad KA, Tonseth S, Stoen CD, Ueland T, Aukrust P (2003) Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J Ect 19:183–188CrossRefPubMedGoogle Scholar
  50. 50.
    Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E (2003) Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology (Berl) 170:429–433CrossRefGoogle Scholar
  51. 51.
    Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22:370–379CrossRefPubMedGoogle Scholar
  52. 52.
    O’Brien SM, Scully P, Scott LV, Dinan TG (2006) Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 90:263–267CrossRefPubMedGoogle Scholar
  53. 53.
    Pae CU, Lee KU, Han H, Serretti A, Jun TY (2004) Tumor necrosis factor alpha gene-G308A polymorphism associated with bipolar I disorder in the Korean population. Psychiatry Res 125:65–68CrossRefPubMedGoogle Scholar
  54. 54.
    Jun TY et al (2003) Possible association between -G308A tumour necrosis factor-alpha gene polymorphism and major depressive disorder in the Korean population. Psychiatr Genet 13:179–181CrossRefPubMedGoogle Scholar
  55. 55.
    Reynolds JL, Ignatowski TA, Sud R, Spengler RN (2005) An antidepressant mechanism of desipramine is to decrease tumor necrosis factor-alpha production culminating in increases in noradrenergic neurotransmission. Neuroscience 133:519–531CrossRefPubMedGoogle Scholar
  56. 56.
    Bluthe RM et al (2000) Role of interleukin-1beta and tumour necrosis factor-alpha in lipopolysaccharide-induced sickness behaviour: a study with interleukin-1 type I receptor-deficient mice. Eur J Neurosci 12:4447–4456PubMedGoogle Scholar
  57. 57.
    Yirmiya R et al (2000) Illness, cytokines, and depression. Ann N Y Acad Sci 917:478–487CrossRefPubMedGoogle Scholar
  58. 58.
    Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411CrossRefPubMedGoogle Scholar
  59. 59.
    Reichenberg A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452CrossRefPubMedGoogle Scholar
  60. 60.
    Meyers CA (1999) Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv Exp Med Biol 461:75–81CrossRefPubMedGoogle Scholar
  61. 61.
    Capuron L, Hauser P, Hinze-Selch D, Miller AH, Neveu PJ (2002) Treatment of cytokine-induced depression. Brain Behav Immun 16:575–580CrossRefPubMedGoogle Scholar
  62. 62.
    Simen BB, Duman CH, Simen AA, Duman RS (2006) TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 59:775–785CrossRefPubMedGoogle Scholar
  63. 63.
    Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115CrossRefPubMedGoogle Scholar
  64. 64.
    Iosif RE et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712CrossRefPubMedGoogle Scholar
  65. 65.
    Obuchowicz E et al (2006) Amitriptyline and nortriptyline inhibit interleukin-1 release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol 9:27–35CrossRefPubMedGoogle Scholar
  66. 66.
    Airan RD et al (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823CrossRefPubMedGoogle Scholar
  67. 67.
    Kim J, Tsien RW (2008) Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. Neuron 58:925–937CrossRefPubMedGoogle Scholar
  68. 68.
    Huh GS et al (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159CrossRefPubMedGoogle Scholar
  69. 69.
    Stevens B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178CrossRefPubMedGoogle Scholar
  70. 70.
    Shohami E, Novikov M, Bass R, Yamin A, Gallily R (1994) Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 14:615–619PubMedGoogle Scholar
  71. 71.
    Combs CK, Karlo JC, Kao SC, Landreth GE (2001) beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188PubMedGoogle Scholar
  72. 72.
    Rieckmann P et al (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37:82–88CrossRefPubMedGoogle Scholar
  73. 73.
    Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 154:944–953PubMedGoogle Scholar
  74. 74.
    Powers JM, Liu Y, Moser AB, Moser HW (1992) The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 51:630–643CrossRefPubMedGoogle Scholar
  75. 75.
    Curfs JH et al (1993) Tumour necrosis factor-alpha and macrophages in Plasmodium berghei-induced cerebral malaria. Parasitology 107:125–134CrossRefPubMedGoogle Scholar
  76. 76.
    New DR, Maggirwar SB, Epstein LG, Dewhurst S, Gelbard HA (1998) HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. J Biol Chem 273:17852–17858CrossRefPubMedGoogle Scholar
  77. 77.
    Bezzi P et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710CrossRefPubMedGoogle Scholar
  78. 78.
    Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59CrossRefPubMedGoogle Scholar
  79. 79.
    Rao SD, Weiss JH (2004) Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci 27:17–23CrossRefPubMedGoogle Scholar
  80. 80.
    Bendotti C, Carri MT (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400CrossRefPubMedGoogle Scholar
  81. 81.
    Nagai M et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622CrossRefPubMedGoogle Scholar
  82. 82.
    Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608–614CrossRefPubMedGoogle Scholar
  83. 83.
    Clement AM et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117CrossRefPubMedGoogle Scholar
  84. 84.
    Mhatre M, Floyd RA, Hensley K (2004) Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 6:147–157PubMedGoogle Scholar
  85. 85.
    Kiaei M et al (2006) Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 26:2467–2473CrossRefPubMedGoogle Scholar
  86. 86.
    Weydt P, Moller T (2005) Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. Neuroreport 16:527–531CrossRefPubMedGoogle Scholar
  87. 87.
    Yoshihara T et al (2002) Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 80:158–167CrossRefPubMedGoogle Scholar
  88. 88.
    Weydt P, Yuen EC, Ransom BR, Moller T (2004) Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia 48:179–182CrossRefPubMedGoogle Scholar
  89. 89.
    Sedel F, Bechade C, Vyas S, Triller A (2004) Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J Neurosci 24:2236–2246CrossRefPubMedGoogle Scholar
  90. 90.
    Elliott JL (2001) Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res Mol Brain Res 95:172–178CrossRefPubMedGoogle Scholar
  91. 91.
    Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L (2005) GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 64:605–612PubMedGoogle Scholar
  92. 92.
    Corona JC, Tapia R (2007) Ca2+-permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo. Neuropharmacology 52:1219–1228CrossRefPubMedGoogle Scholar
  93. 93.
    Van Damme P etal (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci USA 104(37):14825–14830Google Scholar
  94. 94.
    Yin HZ, Sensi SL, Ogoshi F, Weiss JH (2002) Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J Neurosci 22:1273–1279PubMedGoogle Scholar
  95. 95.
    Bernardino L et al (2005) Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 25:6734–6744CrossRefPubMedGoogle Scholar
  96. 96.
    Lebrun-Julien F et al (2009) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29:5536–5545CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Research in Neuroscience, McGill UniversityMontrealCanada

Personalised recommendations