Computational Design of TNF Ligand-Based Protein Therapeutics

  • Almer M. van der Sloot
  • Wim J. Quax
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)


Members of the TNF ligand and TNF receptor family are controlling a variety of cellular processes including host defence, development, autoimmunity, inflammation, and tumor surveillance. Not surprisingly, both families are considered to be an attractive collection of therapeutic targets. Most therapeutics acting on these targets are protein-based drugs. In this review we will discuss current progress in computational design of protein-based therapeutics acting on TNF ligands or TNF receptors. In addition, we describe how this technology can also be used to design tools to study signaling in the TNF ligand/receptor family.


Tumor Necrosis Factor Receptor Soluble Tumor Necrosis Factor Receptor Tumor Necrosis Factor Receptor Family Tumor Necrosis Factor Ligand Receptor Binding Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the EU FP5 program TRISKEL (grant number QLK3-CT-2001-00498) and the EU FP6 program TRIDENT (grant number LSHC-CT-2006-037686). A.M.S. was partially funded by a Juan de la Cierva fellowship of the Spanish Ministry of Education and Science.


  1. 1.
    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, no. 4:487–501CrossRefPubMedGoogle Scholar
  2. 2.
    Bodmer JL, Schneider P, and Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27, no. 1:19–26CrossRefPubMedGoogle Scholar
  3. 3.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, no. 9:745–756CrossRefPubMedGoogle Scholar
  4. 4.
    Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. Biol J Chem 281, no. 20:13964–13971CrossRefGoogle Scholar
  5. 5.
    Zhang G (2004) Tumor necrosis factor family ligand-receptor binding. Curr Opin Struct Biol 14, no. 2:154–160CrossRefPubMedGoogle Scholar
  6. 6.
    Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, no. 5475:2351–2354CrossRefPubMedGoogle Scholar
  7. 7.
    Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, no. 5475:2354–2357CrossRefPubMedGoogle Scholar
  8. 8.
    O’ Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, no. 7264:659–663CrossRefPubMedGoogle Scholar
  9. 9.
    Pavlou AK, Reichert JM (2004) Recombinant protein therapeutics–success rates, market trends and values to 2010. Nat Biotechnol 22, no. 12:1513–1519CrossRefPubMedGoogle Scholar
  10. 10.
    Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22, no. 1–3:1–9CrossRefPubMedGoogle Scholar
  11. 11.
    Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I (1991) Enhancing the thermostability of glucose isomerase by protein engineering. Biotechnology (NY) 9, no. 8:738–742CrossRefGoogle Scholar
  12. 12.
    Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278, no. 5335:82–87CrossRefPubMedGoogle Scholar
  13. 13.
    Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302, no. 5649:1364–1368CrossRefPubMedGoogle Scholar
  14. 14.
    Dantas G, Kuhlman B, Callender D, Wong M, Baker D (2003) A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. Mol J Biol 332, no. 2:449–460CrossRefGoogle Scholar
  15. 15.
    Filikov AV, Hayes RJ, Luo P, Stark DM, Chan C, Kundu A, Dahiyat BI (2002) Computational stabilization of human growth hormone. Protein Sci 11, no. 6:1452–1461CrossRefPubMedGoogle Scholar
  16. 16.
    Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308, no. 5723:857–860CrossRefPubMedGoogle Scholar
  17. 17.
    Luo P, Hayes RJ, Chan C, Stark DM, Hwang MY, Jacinto JM, Juvvadi P, Chung HS, Kundu A, Ary ML, Dahiyat BI (2002) Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci 11, no. 5:1218–1226CrossRefPubMedGoogle Scholar
  18. 18.
    Malakauskas SM, Mayo SL (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol 5, no. 6:470–475CrossRefPubMedGoogle Scholar
  19. 19.
    van der Sloot AM, Mullally MM, Fernandez G-Ballester, Serrano L, Quax WJ (2004) Stabilization of TRAIL, an all-beta-sheet multimeric protein, using computational redesign. Protein Eng Des Sel 17, no. 9:673–680CrossRefPubMedGoogle Scholar
  20. 20.
    Ventura S, Vega MC, Lacroix E, Angrand I, Spagnolo L, Serrano L (2002) Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat Struct Biol 9, no. 6:485–493CrossRefPubMedGoogle Scholar
  21. 21.
    Bolon DN, Grant RA, Baker TA, Sauer RT (2005) Specificity versus stability in computational protein design. Proc Natl Acad Sci USA 102, no. 36:12724–12729CrossRefPubMedGoogle Scholar
  22. 22.
    Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, no. 7240:859–864CrossRefPubMedGoogle Scholar
  23. 23.
    Havranek JJ, Harbury PB (2003) Automated design of specificity in molecular recognition. Nat Struct Biol 10, no. 1:45–52CrossRefPubMedGoogle Scholar
  24. 24.
    Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D (2004) Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11, no. 4:371–379CrossRefPubMedGoogle Scholar
  25. 25.
    Potapov V, Reichmann D, Abramovich R, Filchtinski D, Zohar N, Ben HD, Edelman M, Sobolev V, Schreiber G (2008) Computational redesign of a protein-protein interface for high affinity and binding specificity using modular architecture and naturally occurring template fragments. Mol J Biol 384, no. 1:109–119CrossRefGoogle Scholar
  26. 26.
    Reina J, Lacroix E, Hobson SD, Fernandez G-Ballester, Rybin V, Schwab MS, Serrano L, Gonzalez C (2002) Computer-aided design of a PDZ domain to recognize new target sequences. Nat Struct Biol 9, no. 8:621–627PubMedGoogle Scholar
  27. 27.
    Selzer T, Albeck S, Schreiber G (2000) Rational design of faster associating and tighter binding protein complexes. Nat Struct Biol 7, no. 7:537–541CrossRefPubMedGoogle Scholar
  28. 28.
    Shifman JM, Mayo SL (2003) Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc Natl Acad Sci USA 100, no. 23:13274–13279CrossRefPubMedGoogle Scholar
  29. 29.
    Shifman JM, Mayo SL (2002) Modulating calmodulin binding specificity through computational protein design. Mol J Biol 323, no. 3:417–423CrossRefGoogle Scholar
  30. 30.
    Song G, Lazar GA, Kortemme T, Shimaoka M, Desjarlais JR, Baker D, Springer TA (2006) Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion. Biol J Chem 281, no. 8:5042–5049CrossRefGoogle Scholar
  31. 31.
    Steed PM, Tansey MG, Zalevsky J, Zhukovsky EA, Desjarlais JR, Szymkowski DE, Abbott C, Carmichael D, Chan C, Cherry L, Cheung P, Chirino AJ, Chung HH, Doberstein SK, Eivazi A, Filikov AV, Gao SX, Hubert RS, Hwang M, Hyun L, Kashi S, Kim A, Kim E, Kung J, Martinez SP, Muchhal US, Nguyen DH, O’Brien C, O’Keefe D, Singer K, Vafa O, Vielmetter J, Yoder SC, Dahiyat BI (2003) Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 301, no. 5641:1895–1898CrossRefPubMedGoogle Scholar
  32. 32.
    van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, Samali A, Serrano L, Quax WJ (2006) Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci USA 103, no. 23:8634–8639CrossRefPubMedGoogle Scholar
  33. 33.
    Sio CF, Quax WJ (2004) Improved beta-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol 15, no. 4:349–355CrossRefPubMedGoogle Scholar
  34. 34.
    Verhaert RM, Beekwilder J, Olsthoorn R, van DJ, Quax WJ (2002) Phage display selects for amylases with improved low pH starch-binding. Biotechnol J 96, no. 1:103–118CrossRefGoogle Scholar
  35. 35.
    Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 2004, no. 219:l2CrossRefGoogle Scholar
  36. 36.
    Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121, no. 36:8133–8143CrossRefGoogle Scholar
  37. 37.
    Allert M, Rizk SS, Looger LL, Hellinga HW (2004) Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proc Natl Acad Sci USA 101, no. 21:7907–7912CrossRefPubMedGoogle Scholar
  38. 38.
    Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, Therien MJ, DeGrado WF (2005) Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. Am J Chem Soc 127, no. 5:1346–1347CrossRefGoogle Scholar
  39. 39.
    Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423, no. 6936:185–190CrossRefPubMedGoogle Scholar
  40. 40.
    Matthews JM, Loughlin FE, Mackay JP (2008) Designed metal-binding sites in biomolecular and bioinorganic interactions. Curr Opin Struct Biol 18, no. 4:484–490CrossRefPubMedGoogle Scholar
  41. 41.
    Bolon DN, Mayo SL (2001) Enzyme-like proteins by computational design. Proc Natl Acad Sci USA 98, no. 25:14274–14279CrossRefPubMedGoogle Scholar
  42. 42.
    Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453, no. 7192:190–195CrossRefPubMedGoogle Scholar
  43. 43.
    Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Jr., Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, no. 7093:656–659CrossRefPubMedGoogle Scholar
  44. 44.
    Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382CrossRefPubMedGoogle Scholar
  45. 45.
    Mendes J, Guerois R, Serrano L (2002) Energy estimation in protein design. Curr Opin Struct Biol 12, no. 4:441–446CrossRefPubMedGoogle Scholar
  46. 46.
    Dahiyat BI (2006) In silico protein design: fitting sequence onto structure. Methods Mol Biol 316:359–374PubMedGoogle Scholar
  47. 47.
    Voigt CA, Gordon DB, Mayo SL (2000) Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. Mol J Biol 299, no. 3:789–803CrossRefGoogle Scholar
  48. 48.
    Dahiyat BI (1999) In silico design for protein stabilization. Curr Opin Biotechnol 10, no. 4:387–390CrossRefPubMedGoogle Scholar
  49. 49.
    Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, no. 6:420–430CrossRefPubMedGoogle Scholar
  50. 50.
    de Vries EG, Gietema JA, de Jong S (2006) Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeutic implications. Clin Cancer Res 12, no. 8:2390–2393CrossRefPubMedGoogle Scholar
  51. 51.
    Mahalingam D, Szegezdi E, Keane M, Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35, no. 3:280–288CrossRefPubMedGoogle Scholar
  52. 52.
    Hymowitz SG, O’Connell MP, Ultsch MH, Hurst A, Totpal K, Ashkenazi A, de Vos AM, Kelley RF (2000) A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39, no. 4:633–640CrossRefPubMedGoogle Scholar
  53. 53.
    Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, safety. Pharmacol J Exp Ther 299, no. 1:31–38Google Scholar
  54. 54.
    Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, Deforge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7, no. 4:383–385CrossRefPubMedGoogle Scholar
  55. 55.
    Qin J, Chaturvedi V, Bonish B, Nickoloff BJ (2001) Avoiding premature apoptosis of normal epidermal cells. Nat Med 7, no. 4:385–386CrossRefPubMedGoogle Scholar
  56. 56.
    Lacroix E (1999) Protein design: a computer based approach. PhD Thesis, U. Libre de BruxellesGoogle Scholar
  57. 57.
    LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10, no. 1:66–75CrossRefPubMedGoogle Scholar
  58. 58.
    Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96, no. 12:3900–3906PubMedGoogle Scholar
  59. 59.
    Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97, no. 4:1754–1759CrossRefPubMedGoogle Scholar
  60. 60.
    Kelley RF, Totpal K, Lindstrom SH, Mathieu M, Billeci K, Deforge L, Pai R, Hymowitz SG, Ashkenazi A (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. Biol J Chem 280, no. 3:2205–2212CrossRefGoogle Scholar
  61. 61.
    MacFarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM (2005) TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 65, no. 24:11265–11270CrossRefPubMedGoogle Scholar
  62. 62.
    MacFarlane M, Inoue S, Kohlhaas SL, Majid A, Harper N, Kennedy DB, Dyer MJ, Cohen GM (2005) Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Death Differ 12, no. 7:773–782CrossRefPubMedGoogle Scholar
  63. 63.
    Chuntharapai A, Dodge K, Grimmer K, Schroeder K, Marsters SA, Koeppen H, Ashkenazi A, Kim KJ (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. Immunol J 166, no. 8:4891–4898Google Scholar
  64. 64.
    Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH, Smith CA, Goodwin RG, Kubin MZ (1999) Functional analysis of TRAIL receptors using monoclonal antibodies. Immunol J 162, no. 5:2597–2605Google Scholar
  65. 65.
    Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T, Zhang H, Mountz JD, Koopman WJ, Kimberly RP, Zhou T (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7, no. 8:954–960CrossRefPubMedGoogle Scholar
  66. 66.
    Duiker EW, de Vries EG, Mahalingam D, Meersma GJ, Boersma-van EW, Hollema H, Lub-de Hooge MN, van Dam GM, Cool RH, Quax WJ, Samali A, van der Zee AG, de Jong S (2009) Enhanced antitumor efficacy of a DR5-specific TRAIL variant over recombinant human TRAIL in a bioluminescent ovarian cancer xenograft model. Clin Cancer Res 15, no. 6:2048–2057CrossRefPubMedGoogle Scholar
  67. 67.
    Truneh A, Sharma S, Silverman C, Khandekar S, Reddy MP, Deen KC, McLaughlin MM, Srinivasula SM, Livi GP, Marshall LA, Alnemri ES, Williams WV, Doyle ML (2000) Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. Biol J Chem 275, no. 30:23319–23325CrossRefGoogle Scholar
  68. 68.
    Tur V, van der Sloot AM, Reis CR, Szegezdi E, Cool RH, Samali A, Serrano L, Quax WJ (2008) DR4-selective tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) variants obtained by structure-based design. Biol J Chem 283, no. 29:20560–20568CrossRefGoogle Scholar
  69. 69.
    Reis CR, van der Sloot AM, Szegezdi E, Natoni A, Tur V, Cool RH, Samali A, Serrano L, Quax WJ (2009) Enhancement of antitumor properties of rhTRAIL by affinity increase toward its death receptors (dagger). Biochemistry 48, no. 10:2180–2191CrossRefPubMedGoogle Scholar
  70. 70.
    Olleros ML, Vesin D, Lambou AF, Janssens JP, Ryffel B, Rose S, Fremond C, Quesniaux VF, Szymkowski DE, Garcia I (2009) Dominant-negative tumor necrosis factor protects from Mycobacterium bovis Bacillus Calmette Guerin (BCG) and endotoxin-induced liver injury without compromising host immunity to BCG and Mycobacterium tuberculosis. Infect J Dis 199, no. 7:1053–1063CrossRefGoogle Scholar
  71. 71.
    Zalevsky J, Secher T, Ezhevsky SA, Janot L, Steed PM, O’Brien C, Eivazi A, Kung J, Nguyen DH, Doberstein SK, Erard F, Ryffel B, Szymkowski DE (2007) Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. Immunol J 179, no. 3:1872–1883Google Scholar
  72. 72.
    Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311, no. 5759:347–351CrossRefPubMedGoogle Scholar
  73. 73.
    Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309, no. 5742:1868–1871CrossRefPubMedGoogle Scholar
  74. 74.
    van der Sloot AM, Kiel C, Serrano L, Stricher F (2009) Protein design in biological networks: from manipulating the input to modifying the output. Protein Eng Des Sel 22, no. 9:537–542CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.EMBL-CRG Systems Biology Program, Design of Biological SystemsCentre de Regulació GenòmicaBarcelonaSpain
  2. 2.Department of Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands

Personalised recommendations