Skip to main content

Strategies to Inhibit the Toxicity of Systemic TNF Treatment

  • Conference paper
  • First Online:
Advances in TNF Family Research

Abstract

Research in our unit has focused on several aspects of acute inflammatory shock induced by pro-inflammatory molecules, such as the cytokines TNF and IL-1, and the bacterial cell wall component, LPS. We have paid special attention to the study of TNF in mouse models for two reasons. First, TNF has a very potent anti-tumor effect, especially when combined with IFN-gamma (IFNγ), melphalan, or other chemotherapeutics. This anti-tumor activity is directed to the neovasculature of the tumor [1] and so it is applicable to all solid tumors regardless of their location, tissue type, or degree of progression. Second, TNF exerts very powerful pro-inflammatory effects. Indeed, administration of TNF to healthy volunteers, cancer patients, or experimental animals leads to systemic inflammation so serious that lethal shock can occur [2]. Chronically dysregulated TNF expression is also an essential step in the development of several diseases that impose a heavy social and economic burden, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and asthma [3]. The major aim of most of the unit’s research has been the acquisition of novel insights into the endogenous mechanisms of protection against serious inflammation and their possible application to ameliorating the inflammation induced by TNF in disease and the potential development of TNF-based anti-cancer therapy. In this chapter we will discuss the three different approaches we have been using to discover relevant protective genes and molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruegg C et al (1998) Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 4(4): 408–414

    Article  CAS  PubMed  Google Scholar 

  2. Beutler B, Cerami A (1986) Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320(6063):584–588

    Article  CAS  PubMed  Google Scholar 

  3. Feldmann M, Maini RN (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9(10):1245–1250

    Article  CAS  PubMed  Google Scholar 

  4. Wielockx B et al (2001) Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med 7(11):1202–1208

    Article  CAS  PubMed  Google Scholar 

  5. Van Lint P et al (2005) Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis. J Immunol 175(11):7642–7649

    PubMed  Google Scholar 

  6. Van Roy M et al (2007) The use of tissue inhibitors of matrix metalloproteinases to increase the efficacy of a tumor necrosis factor/interferon gamma antitumor therapy. Cancer Gene Ther 14(4):372–379

    Article  PubMed  Google Scholar 

  7. Van Roy M et al (2007) Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNgamma-based cancer therapy in mice. Mol Cancer Ther 6(9):2563–2571

    Article  PubMed  Google Scholar 

  8. Libert C et al (1991) Involvement of the liver, but not of IL-6, in IL-1-induced desensitization to the lethal effects of tumor necrosis factor. J Immunol 146(8):2625–2632

    CAS  PubMed  Google Scholar 

  9. Takahashi N, Brouckaert P, Fiers W (1991) Induction of tolerance allows separation of lethal and antitumor activities of tumor necrosis factor in mice. Cancer Res 51(9):2366–2372

    CAS  PubMed  Google Scholar 

  10. Waelput W et al (2001) A mediator role for metallothionein in tumor necrosis factor-induced lethal shock. J Exp Med 194(11):1617–1624.

    Article  CAS  PubMed  Google Scholar 

  11. Van Molle W et al (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16(5):685–695

    Article  PubMed  Google Scholar 

  12. Van Molle W et al (2007) Protection of zinc against tumor necrosis factor induced lethal inflammation depends on heat shock protein 70 and allows safe antitumor therapy. Cancer Res 67(15):7301–7307

    Article  PubMed  Google Scholar 

  13. Takahashi N et al (2008) IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med 205(8):1755–1761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Libert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Van Hauwermeiren, F. et al. (2011). Strategies to Inhibit the Toxicity of Systemic TNF Treatment. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_49

Download citation

Publish with us

Policies and ethics