Mechanisms Regulating TNF-Driven Gut and Joint Inflammation

  • Dirk Elewaut
  • Peggy Jacques
  • Lode Melis
  • Koen Venken
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)


Chronic inflammatory arthritis, a hallmark of a variety of inflammatory rheumatic diseases and inflammatory bowel disease, is a lifelong condition, often with onset in early adulthood, with an important morbidity and even mortality in our society. It is estimated that approximately 2–3% suffers from chronic arthritis in our society. The coexistence of gut and joint inflammation is well established in spondyloarthritis (SpA), a cluster of interrelated rheumatologic diseases, characterized by a number of clinical and genetic features including peripheral arthritis (typical of lower limb joints) as well as inflammation of the axial skeleton (e.g., spine). Remarkably, other organs including skin (psoriasis) or the eye (anterior uveitis) may also be affected, indicating the systemic nature of these diseases. Various subtypes of SpA can be distinguished based upon clinical features, but an important overlap between them exists. The clinical subtypes include an kylosing spondylitis (AS, characterized by prominent inflammation of the axial skeleton – spine, sacroiliac joints, although other joints may also be affected), infection triggered reactive arthritis, some forms of juvenile chronic arthritis, arthritis in association with inflammatory bowel diseases (IBD), and some types of psoriatic arthritis.


Inflammatory Bowel Disease Joint Inflammation iNKT Cell Anterior Uveitis Reactive Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cuvelier C et al (1987) Histopathology of intestinal inflammation related to reactive arthritis. Gut 28:394–401CrossRefPubMedGoogle Scholar
  2. 2.
    De Vos M et al (1989) Ileocolonoscopy in seronegative spondylarthropathy. Gastroenterology 96:339–344PubMedGoogle Scholar
  3. 3.
    Mielants H, Veys EM, Cuvelier C, De Vos M,, Botelberghe L (1985) HLA-B27 related arthritis and bowel inflammation. Part 2. Ileocolonoscopy and bowel histology in patients with HLA-B27 related arthritis. J Rheumatol 12:294–298PubMedGoogle Scholar
  4. 4.
    Mielants H, Veys EM, Joos R, Cuvelier C, De Vos M (1987) Repeat ileocolonoscopy in reactive arthritis. J Rheumatol 14:456–458PubMedGoogle Scholar
  5. 5.
    Mielants H, Veys EM, Cuvelier C, De Vos M (1989) Subclinical involvement of the gut in undifferentiated spondylarthropathies. Clin Exp Rheumatol 7:499–504PubMedGoogle Scholar
  6. 6.
    Mielants H, Veys EM, Cuvelier C, de Vos M (1988) Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol 27 Suppl 2:95–105Google Scholar
  7. 7.
    Mielants H et al (1995) The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J Rheumatol 22:2273–2278PubMedGoogle Scholar
  8. 8.
    Mielants H et al (1995) The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J Rheumatol 22:2279–2284PubMedGoogle Scholar
  9. 9.
    Mielants H et al (1995).The evolution of spondyloarthropathies in relation to gut histology. I. Clinical aspects. J Rheumatol 22:2266–2272PubMedGoogle Scholar
  10. 10.
    De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys E (1996) Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110:1696–1703CrossRefPubMedGoogle Scholar
  11. 11.
    Brewerton DA et al (1973) Ankylosing spondylitis and HL-A 27. Lancet 1:904–907CrossRefPubMedGoogle Scholar
  12. 12.
    Palm O, Moum B, Ongre A, Gran JT (2002) Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). J Rheumatol 29:511–515PubMedGoogle Scholar
  13. 13.
    Purrmann J et al (1988) HLA antigens in ankylosing spondylitis associated with Crohn’s disease. Increased frequency of the HLA phenotype B27,B44. J Rheumatol 15:1658–1661PubMedGoogle Scholar
  14. 14.
    Steer S et al (2003) Low back pain, sacroiliitis, and the relationship with HLA-B27 in Crohn’s disease. J Rheumatol 30:518–522PubMedGoogle Scholar
  15. 15.
    Burton PR et al (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39:1329–1337CrossRefPubMedGoogle Scholar
  16. 16.
    Duerr RH et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463CrossRefPubMedGoogle Scholar
  17. 17.
    Rahman P et al (2008) Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum 58:1020–1025CrossRefPubMedGoogle Scholar
  18. 18.
    Jacques P, Elewaut D (2008) Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol 1:364–371CrossRefPubMedGoogle Scholar
  19. 19.
    Jacques P, Mielants H, Coppieters K, De Vos M, Elewaut D (2007) The intimate relationship between gut and joint in spondyloarthropathies. Curr Opin Rheumatol 19:353–357CrossRefPubMedGoogle Scholar
  20. 20.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398CrossRefPubMedGoogle Scholar
  21. 21.
    Armaka M et al (2008) Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J Exp Med 205:331–337CrossRefPubMedGoogle Scholar
  22. 22.
    Melis L, Elewaut D (2009) Progress in spondylarthritis. Immunopathogenesis of spondyloarthritis: which cells drive disease? Arthritis Res Ther 11:233Google Scholar
  23. 23.
    Brown MA (2009) Progress in spondylarthritis. Progress in studies of the genetics of ankylosing spondylitis. Arthritis Res Ther 11:254CrossRefPubMedGoogle Scholar
  24. 24.
    Kawano T et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629CrossRefPubMedGoogle Scholar
  25. 25.
    Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG (2000) NKT cells: facts, functions and fallacies. Immunol Today 21:573–583CrossRefPubMedGoogle Scholar
  26. 26.
    Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562CrossRefPubMedGoogle Scholar
  27. 27.
    Rachitskaya AV et al (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol 180:5167–5171PubMedGoogle Scholar
  28. 28.
    Akbari O et al (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588CrossRefPubMedGoogle Scholar
  29. 29.
    Korsgren M et al (1999) Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189:553–562CrossRefPubMedGoogle Scholar
  30. 30.
    Coppieters K et al (2007) A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J Immunol 179:2300–2309PubMedGoogle Scholar
  31. 31.
    Duarte N et al (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173:3112–3118PubMedGoogle Scholar
  32. 32.
    Kawano T et al (1998) Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valpha14 NKT cells. Proc Natl Acad Sci U S A 95:5690–5693CrossRefPubMedGoogle Scholar
  33. 33.
    Amprey JL et al (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904CrossRefPubMedGoogle Scholar
  34. 34.
    Fischer K et al (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101:10685–10690CrossRefPubMedGoogle Scholar
  35. 35.
    Kinjo Y et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525CrossRefPubMedGoogle Scholar
  36. 36.
    Gumperz JE et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou D et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789CrossRefPubMedGoogle Scholar
  38. 38.
    Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388PubMedGoogle Scholar
  39. 39.
    Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413:531–534CrossRefPubMedGoogle Scholar
  40. 40.
    Chiba A et al (2004) Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of alpha-galactosylceramide. Arthritis Rheum 50:305–313CrossRefPubMedGoogle Scholar
  41. 41.
    Burdin N, Brossay L, Kronenberg M (1999) Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 29:2014–2025CrossRefPubMedGoogle Scholar
  42. 42.
    Kim HY et al (2005) NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor beta1 production. J Exp Med 201:41–47CrossRefPubMedGoogle Scholar
  43. 43.
    Kim HY, Kim S, Chung DH (2006) FcgammaRIII engagement provides activating signals to NKT cells in antibody-induced joint inflammation. J Clin Invest 116:2484–2492CrossRefPubMedGoogle Scholar
  44. 44.
    Jacques P et al (2010) Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum 62(4):988–999CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dirk Elewaut
    • 1
  • Peggy Jacques
    • 1
  • Lode Melis
    • 1
  • Koen Venken
    • 1
  1. 1.Laboratory for Molecular Immunology and InflammationGhent University HospitalGhentBelgium

Personalised recommendations