Advertisement

Introductory Words About TL1A/DR3

  • Stephan R. Targan
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)

Abstract

TL1A, a protein member of the tumor necrosis factor superfamily 15 (TNFSF15), signaling through its receptor DR3, has been defined as a master regulatory cytokine that plays a key role in human intestinal inflammation. Recent studies have also defined a critical role for TL1A in the pathogenesis of mouse experimental autoimmune encephalomyelitis (EAE), models of allergic lung inflammation and human rheumatoid arthritis. The initial discovery of TL1A has given way to subsequent genetic, human, and animal investigation at the bench and will reach the bedside in the form of a clinical trial in 2011–2012. Furthermore, TNFSF15 and TL1A fit superbly into the personalized medicine paradigm, in which the combination of genetic, biologic, and micro-environmental information may well combine to inform the design of a therapeutic for the subgroup of Crohn’s disease patients that will be uniquely likely to benefit.

Keywords

Celiac Disease Experimental Autoimmune Encephalomyelitis Th17 Differentiation Mouse Experimental Autoimmune Encephalomyelitis Human Rheumatoid Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Duchmann R, Neurath MF, Meyer zum Buschenfelde KH (1997) Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 148(8–9):589–594CrossRefPubMedGoogle Scholar
  2. 2.
    Duchmann R, Schmitt E, Knolle P, Meyer zum Buschenfelde KH, Neurath M (1996) Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 26(4):934–938CrossRefPubMedGoogle Scholar
  3. 3.
    Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME et al (2000) Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 68(3):1542–1548CrossRefPubMedGoogle Scholar
  4. 4.
    Landers CJ, Cohavy O, Misra R, Yang H, Lin YC, Braun J et al (2002) Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 123(3):689–699CrossRefPubMedGoogle Scholar
  5. 5.
    Prantera C, Zannoni F, Scribano ML, Berto E, Andreoli A, Kohn A et al (1996) An antibiotic regimen for the treatment of active Crohn’s disease: a randomized, controlled clinical trial of metronidazole plus ciprofloxacin. Am J Gastroenterol 91(2):328–332PubMedGoogle Scholar
  6. 6.
    Saxon A, Shanahan F, Landers C, Ganz T, Targan S (1990) A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol 86(2):202–210CrossRefPubMedGoogle Scholar
  7. 7.
    Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA et al (2005) Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 128(7):2020–2028CrossRefPubMedGoogle Scholar
  8. 8.
    Fleshner PR, Vasiliauskas EA, Kam LY, Fleshner NE, Gaiennie J, Abreu-Martin MT et al (2001) High level perinuclear antineutrophil cytoplasmic antibody (pANCA) in ulcerative colitis patients before colectomy predicts the development of chronic pouchitis after ileal pouch-anal anastomosis. Gut 49(5):671–677CrossRefPubMedGoogle Scholar
  9. 9.
    Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR (2000) Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 47(4):487–496CrossRefPubMedGoogle Scholar
  10. 10.
    Vasiliauskas EA, Plevy SE, Landers CJ, Binder SW, Ferguson DM, Yang H et al (1996) Perinuclear antineutrophil cytoplasmic antibodies in patients with Crohn’s disease define a clinical subgroup. Gastroenterology 110(6):1810–1819CrossRefPubMedGoogle Scholar
  11. 11.
    Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A, Lafkas G et al (2005) Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol 174(8):4985–4990PubMedGoogle Scholar
  12. 12.
    Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI et al (2000) Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 192(5):761–768CrossRefPubMedGoogle Scholar
  13. 13.
    Papadakis KA, Prehn JL, Landers C, Han Q, Luo X, Cha SC et al (2004) TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol 172(11):7002–7007PubMedGoogle Scholar
  14. 14.
    Prehn JL, Mehdizadeh S, Landers CJ, Luo X, Cha SC, Wei P et al (2004) Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol 112(1):66–77CrossRefPubMedGoogle Scholar
  15. 15.
    Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS, Targan SR (2007) The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol 178(7):4033–4038PubMedGoogle Scholar
  16. 16.
    Shih DQ, Kwanly, Chavez V, Cohavy O, Gonsky R, Chang EY, Chang C, Elson CO, Targan SR (2009) Microbial induction of inflammatory bowel disease associated gene TLIA (TNFSFIS) in antigen presenting cells. Eur J. Immumol 39(11):3239–3250CrossRefGoogle Scholar
  17. 17.
    Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D et al (2008) TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135(2):552–567CrossRefPubMedGoogle Scholar
  18. 18.
    Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X et al (2008) TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 205(5):1049–1062CrossRefPubMedGoogle Scholar
  19. 19.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238CrossRefPubMedGoogle Scholar
  20. 20.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441(7090):231–234CrossRefPubMedGoogle Scholar
  21. 21.
    Veldhoen M, Hocking RJ, Flavell RA, Stockinger B (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7(11):1151–1156CrossRefPubMedGoogle Scholar
  22. 22.
    Veldhoen M, Stockinger B (2006) TGFbeta1, a “Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol 27(8):358–361CrossRefPubMedGoogle Scholar
  23. 23.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949CrossRefPubMedGoogle Scholar
  24. 24.
    Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352Google Scholar
  25. 25.
    Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641–649CrossRefPubMedGoogle Scholar
  26. 26.
    Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9(6):650–657CrossRefPubMedGoogle Scholar
  27. 27.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639–646CrossRefPubMedGoogle Scholar
  28. 28.
    Michelsen K, Thomas LS, Taylor KD, Yu QT, Mei L, Landers CJ et al (2009) IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS ONE 4(3):e4719Google Scholar
  29. 29.
    Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D et al (2005) Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 14(22):3499–3506CrossRefPubMedGoogle Scholar
  30. 30.
    Tremelling M, Berzuini C, Massey D, Bredin F, Price C, Dawson C et al (2008) Contribution of TNFSF15 gene variants to Crohn’s disease susceptibility confirmed in UK population. Inflamm Bowel Dis 14(6):733–737CrossRefPubMedGoogle Scholar
  31. 31.
    Picornell Y, Mei L, Taylor K, Yang H, Targan SR, Rotter JI (2007) TNFSF15 is an ethnic-specific IBD gene. Inflamm Bowel Dis 13(11):1333–1338CrossRefPubMedGoogle Scholar
  32. 32.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962CrossRefPubMedGoogle Scholar
  33. 33.
    Consortium WTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations