Advertisement

TNF-α and TNFR in Chagas Disease: From Protective Immunity to Pathogenesis of Chronic Cardiomyopathy

  • Joseli Lannes-Vieira
  • Isabela Resende Pereira
  • Nathália Ferreira Vinagre
  • Lucia Elena Alvarado Arnez
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)

Abstract

American trypanosomiasis or Chagas disease (CD), discovered in 1909 by the Brazilian physician Carlos Chagas, is a vector-borne complex disease caused by the haemoflagellate protozoan parasite Trypanosoma cruzi [1]. One hundred years after its discovery, CD is still epidemiologically relevant, afflicting 12–14 million neglected individuals in 18 endemic countries in Latin America, as well as in non-endemic countries in North America, Europe, and Asia [2, 3]. In the last three decades, governmental initiatives targeting the main vector in endemic areas resulted in successful decline of the incidence of acute infection. For instance, in Brazil, the numbers of acute infection dropped from more than 100,000 new cases/year during the 1980s to less than 500 new cases/year during 2001–2006 [2, 4]. However, the current epidemiological data indicate that we must devote our efforts and agenda to the implementation of sustainable policies for CD control. These measures should incorporate guaranteeing access to the trypanocidal treatment and therapies required by patients, particularly pregnant women and children, developing new drugs and therapeutic strategies, identifying progression markers, as well as elucidating pathogenic mechanisms leading to the distinct clinical forms of CD [3, 4].

Keywords

Trypanosoma Cruzi Chagasic Patient Parasite Dissemination Current Epidemiological Data Chronic Chagasic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by grants from CNPq, FAPERJ, DECIT/MS/CNPq/MCT, INCT/CNPq, and fellowship from CNPq

References

  1. 1.
    Chagas CRJ (1909) Nova tripanosomiase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n.g., n.sp., agente etiológico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218Google Scholar
  2. 2.
    Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102 (Suppl. I):75–85PubMedGoogle Scholar
  3. 3.
    Dias JC (2009) Elimination of transmission in Chagas disease: perspectives. Mem Inst Oswaldo Cruz 104 (Suppl. I):41–45PubMedGoogle Scholar
  4. 4.
    Lannes-Vieira J, Soeiro Mde N, Corrêa-Oliveira R, de Araújo-Jorge TC (2009) Chagas disease centennial anniversary celebration: historical overview and prospective proposals aiming to maintain vector control and improve patient prognosis – a permanent challenge. Mem Inst Oswaldo Cruz 104 (Suppl I):5–7PubMedGoogle Scholar
  5. 5.
    Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M (2003) Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc Res 60:96–107CrossRefPubMedGoogle Scholar
  6. 6.
    Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115:1109–1123CrossRefPubMedGoogle Scholar
  7. 7.
    Freitas HF, Chizzola PR, Paes AT, Lima AC, Mansur AJ (2005) Risk stratification in a Brazilian hospital-based cohort of 1220 outpatients with heart failure: role of Chagas’ heart disease. Int J Cardiol 102:239–247CrossRefPubMedGoogle Scholar
  8. 8.
    Lannes-Vieira J, Silverio JC, Resende-Pereira I, Vinagre NF, Carvalho CE, Paica CN, Silva AA (2009) Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the genesis to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 104 (Suppl. I):226–235PubMedGoogle Scholar
  9. 9.
    Chagas CRJ das (1916) Processos patogênicos da tripanossomíase americana. Mem Inst Oswaldo Cruz 8:5–35CrossRefGoogle Scholar
  10. 10.
    Laranja FS, Dias E, Nobrega GC, Miranda A (1956) Chagas’ disease. A clinical, epidemiologic, and pathologic study. Circulation 14:1035–1060PubMedGoogle Scholar
  11. 11.
    Higuchi MD, Reis MM, Aiello VD, Benvenuti LA, Gutierrez PS, Bellotti G, Pileggi F (1997) Association of an increase in CD8+ T cells with the presence of Trypanosoma cruzi antigens in chronic, human, chagasic myocarditis. Am J Trop Med Hyg 56:485–489PubMedGoogle Scholar
  12. 12.
    Reis DD, Jones EM, Tostes S Jr, Lopes ER, Gazzinelli G, Colley DG, McCurley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644PubMedGoogle Scholar
  13. 13.
    dos Santos PV, Roffê E, Santiago HC, Torres RA, Marino AP, Paiva CN, Silva AA, Gazzinelli RT, Lannes-Vieira J (2001). Prevalence of CD8(+) alpha beta T cells in Trypanosoma cruzi-elicited myocarditis is associated with acquisition of CD62L(Low)LFA-1(High)VLA-4(High) activation phenotype and expression of IFN-gamma-inducible adhesion and chemoattractant molecules. Microbes Infect 3:971–984CrossRefPubMedGoogle Scholar
  14. 14.
    Lima ECS, Garcia I, Vicentelli MH, Vassalli P, Minoprio P (1997) Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice. Infect Immun 65:457–465PubMedGoogle Scholar
  15. 15.
    Aliberti JC, Souto JT, Marino AP, Lannes-Vieira J, Teixeira MM, Farber J, Gazzinelli RT, Silva JS (2001) Modulation of chemokine production and inflammatory responses in interferon-gamma- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection. Am J Pathol 158:1433–1440PubMedGoogle Scholar
  16. 16.
    D’avila Reis D, Jones EM, Tostes Jr S, Lopes ER, Gazzinelli G, Colley DG, Mc Curley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-α+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644Google Scholar
  17. 17.
    Abel LC, Rizzo LV, Ianni B, Albuquerque F, Bacal F, Carrara D, Bocchi EA, Teixeira HC, Mady C, Kalil J, Cunha-Neto E (2001) Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. J Autoimmun 17:99–107CrossRefPubMedGoogle Scholar
  18. 18.
    Kroll-Palhares K, Silverio JC, Silva AA, Michailowsky V, Marino AP, Silva NM, Carvalho CM, Pinto LM, Gazzinelli RT, Lannes-Vieira J (2008) TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-alpha blockade. Mem Inst Oswaldo Cruz 103:375–385CrossRefPubMedGoogle Scholar
  19. 19.
    Pena SDJ, Machado CR, Macedo AM. Trypanosoma cruzi: ancestral genomes and population structure. Mem Inst Oswaldo Cruz 104 (Suppl I):108–114Google Scholar
  20. 20.
    Zicker F, Smith PG, Netto JC, Oliveira RM, Zicker EM (1990) Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas’ cardiopathy. Am J Trop Med Hyg 43:498–505PubMedGoogle Scholar
  21. 21.
    Ferreira RC, Ianni BM, Abel LC, Buck P, Mady C, Kalil J, Cunha-Neto E (2003) Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/“indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz 98:407–411PubMedGoogle Scholar
  22. 22.
    Perez-Fuentes R, Guegan JF, Barnabe C, Lopez-Colombo A, Salgado-Rosas H, Torres-Rasgado E, Briones B, Romero-Diaz M, Ramos-Jimenez J, Sanchez-Guillen M del C (2003) Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 33:293–299CrossRefPubMedGoogle Scholar
  23. 23.
    Talvani A, Rocha MO, Barcelos LS, Gomes YM, Ribeiro AL, Teixeira MM (2004) Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clin Infect Dis 38:943–950CrossRefPubMedGoogle Scholar
  24. 24.
    Beraun Y, Nieto A, Collado MD, Gonzalez A, Martin J (1998) Polymorphisms at tumor necrosis factor (TNF) loci are not associated with Chagas’ disease. Tissue Antigens 52:81–83CrossRefPubMedGoogle Scholar
  25. 25.
    Kroeger KM, Carville KS, Abraham LJ (1997) The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 34:391–399CrossRefPubMedGoogle Scholar
  26. 26.
    Rodriguez-Perez JM, Cruz-Robles D, Hernandez-Pacheco G, Perez-Hernandez N, Murguia LE, Granados J, Reyes PA, Vargas-Alarcon G (2005) Tumor necrosis factor-alpha promoter polymorphism in Mexican patients with Chagas’ disease. Immunol Lett 98:97–102CrossRefPubMedGoogle Scholar
  27. 27.
    Pociot F, Briant L, Jongeneel CV, Mölvig J, Worsaae H, Abbal M, Thomsen M, Nerup J, Cambon-Thomsen A (1993) Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23:224–231CrossRefPubMedGoogle Scholar
  28. 28.
    Drigo SA, Cunha-Neto E, Ianni B, Cardoso MR, Braga PE, Fae KC, Nunes VL, Buck P, Mady C, Kalil J, Goldberg AC (2006) TNF gene polymorphisms are associated with reduced survival in severe Chagas’ disease cardiomyopathy patients. Microbes Infect 8:598–603CrossRefPubMedGoogle Scholar
  29. 29.
    Campelo V, Dantas RO, Simões RT, Mendes-Junior CT, Sousa SM, Simões AL, Donadi EA (2007) TNF microsatellite alleles in Brazilian Chagasic patients. Dig Dis Sci 52:3334–3339CrossRefPubMedGoogle Scholar
  30. 30.
    Drigo SA, Cunha-Neto E, Ianni B, Mady C, Faé KC, Buck P, Kalil J, Goldberg AC (2007) Lack of association of tumor necrosis factor-alpha polymorphisms with Chagas disease in Brazilian patients. Immunol Lett 108:109–111CrossRefPubMedGoogle Scholar
  31. 31.
    Ramasawmy R, Cunha-Neto E, Faé KC, Müller NG, Cavalcanti VL, Drigo SA, Ianni B, Mady C, Kalil J, Goldberg AC (2006) BAT1, a putative anti-inflammatory gene, is associated with chronic Chagas cardiomyopathy. J Infect Dis. 193:1394–1399CrossRefPubMedGoogle Scholar
  32. 32.
    Ramasawmy R, Fae KC, Cunha-Neto E, Müller NG, Cavalcanti VL, Ferreira RC, Drigo SA, Ianni B, Mady C, Goldberg AC, Kalil J (2007) Polymorphisms in the gene for lymphotoxin-alpha predispose to chronic Chagas cardiomyopathy. J Infect Dis 196:1836–1843CrossRefPubMedGoogle Scholar
  33. 33.
    Starobinas N, Russo M, Minoprio P, Hontebeyrie-Joskowicz M (1991) Is TNF alpha involved in early susceptibility of Trypanosoma cruzi-infected C3H/He mice? Res Immunol 142:117–122CrossRefPubMedGoogle Scholar
  34. 34.
    Campos MA, Gazzinelli RT (2004) Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors. Mediators Inflamm 13:139–143CrossRefPubMedGoogle Scholar
  35. 35.
    Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1:327–341CrossRefPubMedGoogle Scholar
  36. 36.
    Brener Z, Gazzinelli RT (1997) Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int Arch Allergy Immunol 114:103–110Google Scholar
  37. 37.
    Silva JS, Machado FS, Martins GA (2003) The role of nitric oxide in the pathogenesis of Chagas disease. Front Biosci 8:s314–325CrossRefPubMedGoogle Scholar
  38. 38.
    De Titto EH, Catterall JR, Remington JS (1986) Activity of recombinant tumor necrosis factor on Toxoplasma gondii and Trypanosoma cruzi. J Immunol 137, 1342–1345, 1986.PubMedGoogle Scholar
  39. 39.
    Black CM, Israelski DM, Suzuki Y, Remington JS (1989) Effect of recombinant tumour necrosis factor on acute infection in mice with Toxoplasma gondii or Trypanosoma cruzi. Immunol 68:570–474Google Scholar
  40. 40.
    Truyens C, Torrico F, Angelo-Barrios A, Lucas R, Heremans H, De Baetselier P, Carlier Y (1995) The cachexia associated with Trypanosoma cruzi acute infection in mice is attenuated by anti-TNF-alpha, but not by anti-IL-6 or anti-IFN-gamma antibodies. Parasite Immunol 17:561–568CrossRefPubMedGoogle Scholar
  41. 41.
    Lima ES, Andrade ZA, Andrade SG (2001) TNF-alpha is expressed at sites of parasite and tissue destruction in the spleen of mice acutely infected with Trypanosoma cruzi. Int J Exp Pathol 82:327–336CrossRefPubMedGoogle Scholar
  42. 42.
    Paiva CN, Arras RH, Lessa LP, Gibaldi D, Alves L, Metz CN, Gazzinelli R, Pyrrho AS, Lannes-Vieira J, Bozza MT (2007) Unraveling the lethal synergism between Trypanosoma cruzi infection and LPS: a role for increased macrophage reactivity. Eur J Immunol 37:1355–1364CrossRefPubMedGoogle Scholar
  43. 43.
    Castaños-Velez E, Maerlan S, Osorio LM, Aberg F, Biberfeld P, Orn A, Rottenberg ME (1998) Trypanosoma cruzi infection in tumor necrosis factor receptor p55-deficient mice. Infect Immun 66:2960–2968PubMedGoogle Scholar
  44. 44.
    Lima CES, Garcia I, Vicentelli MH, Vassalli P, Minoprio P (1997) Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice. Infect Immun 65:457–465PubMedGoogle Scholar
  45. 45.
    Michailowsky V, Silva NM, Rocha CD, Vieira LQ, Lannes-Vieira J, Gazzinelli RT (2001) Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol 159:1723–1733PubMedGoogle Scholar
  46. 46.
    Minoprio P (2001) Parasite polyclonal activators: new targets for vaccination approaches? Int J Parasitol 31:588–591CrossRefPubMedGoogle Scholar
  47. 47.
    Tzelepis F, Persechini PM, Rodrigues MM (2007) Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load. PLoS ONE 2:e393CrossRefPubMedGoogle Scholar
  48. 48.
    Michailowsky V, Celes MR, Marino AP, Silva AA, Vieira LQ, Rossi MA, Gazzinelli RT, Lannes-Vieira J, Silva JS (2004) Intercellular adhesion molecule 1 deficiency leads to impaired recruitment of T lymphocytes and enhanced host susceptibility to infection with Trypanosoma cruzi. J Immunol 173:463–470PubMedGoogle Scholar
  49. 49.
    Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–595PubMedGoogle Scholar
  50. 50.
    Shaw SM, Shah MKH, Willians SG, Filders JE (2009) Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 11:113–118CrossRefPubMedGoogle Scholar
  51. 51.
    Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ, Silva JS (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity.  Circulation 102:3003–3008PubMedGoogle Scholar
  52. 52.
    Marino AP, da Silva A, dos Santos P, Pinto LM, Gazzinelli RT, Teixeira MM, Lannes-Vieira J (2004) Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. Circulation 110:1443–1449CrossRefPubMedGoogle Scholar
  53. 53.
    Medeiros GA, Silvério JC, Marino AP, Roffê E, Vieira V, Kroll-Palhares K, Carvalho CE, Silva AA, Teixeira MM, Lannes-Vieira J (2009) Treatment of chronically Trypanosoma cruzi-infected mice with a CCR1/CCR5 antagonist (Met-RANTES) results in amelioration of cardiac tissue damage. Microbes Infect 11:264–273CrossRefPubMedGoogle Scholar
  54. 54.
    Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM, Rossi MA, Silva JS (2005) CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis 191:627–636CrossRefPubMedGoogle Scholar
  55. 55.
    Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, Gjertson D, Braun J, Reed E, Singh RR (2008) TNF alpha blockade in human diseases: mechanisms and future directions. Clin Immunol 126:121–136CrossRefPubMedGoogle Scholar
  56. 56.
    Pérez AR, Fontanella GH, Nocito AL, Revelli S, Bottasso OA (2009) Short treatment with the tumour necrosis factor-alpha blocker infliximab diminishes chronic chagasic myocarditis in rats without evidence of Trypanosoma cruzi reactivation. Clin Exp Immunol 157:291–299CrossRefPubMedGoogle Scholar
  57. 57.
    Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N, Chandra M, Shirani J, Tanowitz HB (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol. 31:75–88CrossRefPubMedGoogle Scholar
  58. 58.
    Andrade SG, Magalhaes LA, Pessina DH (2008) Importance of TNF-α in the course of acute infection with Trypanosoma cruzi: influence of its inhibition by pentoxiflyline treatment. Mem Inst Oswaldo Cruz 103:21–26PubMedGoogle Scholar
  59. 59.
    Bilate AM, Salemi VM, Ramires FJ, de Brito T, Russo M, Fonseca SG, Faé KC, Martins DG, Silva AM, Mady C, Kalil J, Cunha-Neto E (2007) TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy. Microbes Infect 9:1104–1113CrossRefPubMedGoogle Scholar
  60. 60.
    Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 97:5456–5461CrossRefPubMedGoogle Scholar
  61. 61.
    Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M (2005) Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus 14:780–784CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joseli Lannes-Vieira
    • 1
  • Isabela Resende Pereira
    • 1
  • Nathália Ferreira Vinagre
    • 1
  • Lucia Elena Alvarado Arnez
    • 1
  1. 1.Laboratory of Biology of the InteractionsOswaldo Cruz InstituteRio de JaneiroBrazil

Personalised recommendations