Contrast Ultrasound in Imaging Tumor Angiogenesis



New strategies to detect tumor angiogenesis and monitor response of tumor vasculature to therapy are needed. There are a plethora of anti-angiogenic strategies being evaluated pre-clinically and in the clinical setting; however, a ­significant unmet challenge is following the response of tumors to anti-angiogenic therapy. Herein we review current modalities being investigated for this purpose and highlight the utility of contrast ultrasound imaging using targeted microbubbles (MB). MB are small (1–10 μm) gas-filled intravascular tracers. MB can be targeted via antibodies, peptides or other moieties to virtually any endothelial cell surface marker and thus selectively mark specific vascular beds (e.g., tumor blood vessels). Furthermore targeted MB can be used to non-invasively evaluate the expression level of particular molecular antigens (e.g., CD105, VEGFR2) and monitor the effect of therapy on target expression. We conclude that targeted MB represent a novel and attractive tool for non-invasive, vascular-targeted molecular imaging of tumor angiogenesis and for monitoring vascular effects specific to anti-tumor therapy in vivo.


Vascular Endothelial Growth Factor Positron Emission Tomography Tumor Angiogenesis Tumor Vasculature Tumor Blood Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aminopeptidase N


blood vessels


endothelial cells




matrix metalloproteinases


prostate specific membrane antigen


smooth muscle cell


tumor endothelial marker


complex of VEGF and its receptor


  1. Asano, M., Yukita, A., and Suzuki, H. (1999). Wide spectrum of antitumor activity of a ­neutralizing monoclonal antibody to human vascular endothelial growth factor. Jpn J Cancer Res 90, 93–100.PubMedGoogle Scholar
  2. Baluk, P., Hashizume, H., and McDonald, D. M. (2005). Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15, 102–111.PubMedGoogle Scholar
  3. Barrett, T., Brechbiel, M., Bernardo, M., and Choyke, P. L. (2007). MRI of tumor angiogenesis. J Magn Reson Imaging 26, 235–249.PubMedGoogle Scholar
  4. Borsi, L., Balza, E., Bestagno, M., Castellani, P., Carnemolla, B., Biro, A., Leprini, A., Sepulveda, J., Burrone, O., Neri, D., and Zardi, L. (2002). Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102, 75–85.PubMedGoogle Scholar
  5. Brekken, R. A., Huang, X., King, S. W., and Thorpe, P. E. (1998). Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 58, 1952–1959.PubMedGoogle Scholar
  6. Brekken, R. A., Overholser, J. P., Stastny, V. A., Waltenberger, J., Minna, J. D., and Thorpe, P. E. (2000). Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 60, 5117–5124.PubMedGoogle Scholar
  7. Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571.PubMedGoogle Scholar
  8. Broumas, A. R., Pollard, R. E., Bloch, S. H., Wisner, E. R., Griffey, S., and Ferrara, K. W. (2005). Contrast-enhanced computed tomography and ultrasound for the evaluation of tumor blood flow. Invest Radiol 40, 134–147.PubMedGoogle Scholar
  9. Burg, M. A., Pasqualini, R., Arap, W., Ruoslahti, E., and Stallcup, W. B. (1999). NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59, 2869–2874.PubMedGoogle Scholar
  10. Burrows, F. J., Derbyshire, E. J., Tazzari, P. L., Amlot, P., Gazdar, A. F., King, S. W., Letarte, M., Vitetta, E. S., and Thorpe, P. E. (1995). Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1, 1623–1634.PubMedGoogle Scholar
  11. Carnemolla, B., Neri, D., Castellani, P., Leprini, A., Neri, G., Pini, A., Winter, G., and Zardi, L. (1996). Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68, 397–405.PubMedGoogle Scholar
  12. Castell, F., and Cook, G. J. (2008). Quantitative techniques in 18FDG PET scanning in oncology. Br J Cancer 98, 1597–1601.PubMedGoogle Scholar
  13. Cheng, S. C., Dy, T. C., and Feinstein, S. B. (1998). Contrast echocardiography: review and future directions. Am J Cardiol 81, 41G-48G.PubMedGoogle Scholar
  14. Cherrington, J. M., Strawn, L. M., and Shawver, L. K. (2000). New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res 79, 1–38.PubMedGoogle Scholar
  15. Cohen, J. L., Cheirif, J., Segar, D. S., Gillam, L. D., Gottdiener, J. S., Hausnerova, E., and Bruns, D. E. (1998). Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III multicenter trial. J Am Coll Cardiol 32, 746–752.PubMedGoogle Scholar
  16. Cooke, S. P., Boxer, G. M., Lawrence, L., Pedley, R. B., Spencer, D. I., Begent, R. H., and Chester, K. A. (2001). A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res 61, 3653–3659.PubMedGoogle Scholar
  17. Correas, J. M., Bridal, L., Lesavre, A., Mejean, A., Claudon, M., and Helenon, O. (2001). Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11, 1316–1328.PubMedGoogle Scholar
  18. Cwajg, J., Xie, F., O’Leary, E., Kricsfeld, D., Dittrich, H., and Porter, T. R. (2000). Detection of angiographically significant coronary artery disease with accelerated intermittent imaging after intravenous administration of ultrasound contrast material. Am Heart J 139, 675–683.PubMedGoogle Scholar
  19. Dayton, P. A., and Ferrara, K. W. (2002). Targeted imaging using ultrasound. J Magn Reson Imaging 16, 362–377.PubMedGoogle Scholar
  20. de Langen, A. J., van den Boogaart, V. E., Marcus, J. T., and Lubberink, M. (2008). Use of H2(15)O-PET and DCE-MRI to measure tumor blood flow. Oncologist 13, 631–644.PubMedGoogle Scholar
  21. Duda, D. G., Jain, R. K., and Willett, C. G. (2007). Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J Clin Oncol 25, 4033–4042.PubMedGoogle Scholar
  22. Dugdale, P. E., Miles, K. A., Bunce, I., Kelley, B. B., and Leggett, D. A. (1999). CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response. J Comput Assist Tomogr 23, 540–547.PubMedGoogle Scholar
  23. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., and Augustin, H. G. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60, 1388–1393.PubMedGoogle Scholar
  24. Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., Klibanov, A. L., Kaul, S., Shaffrey, M. E., Sklenar, J., and Lindner, J. R. (2003). Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108, 336–341.PubMedGoogle Scholar
  25. Epstein, A. L., Khawli, L. A., Hornick, J. L., and Taylor, C. R. (1995). Identification of a monoclonal antibody, TV-1 directed against the basement membrane of tumor vessels, and its use to enhance the delivery of macromolecules to tumors after conjugation with interleukin 2. Cancer Res 55, 2673–2680.PubMedGoogle Scholar
  26. Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2, 795–803.PubMedGoogle Scholar
  27. Ferrara, N., and Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967–974.PubMedGoogle Scholar
  28. Ferrara, N., Gerber, H. P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669–676.PubMedGoogle Scholar
  29. Ferrara, N., Hillan, K. J., and Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333, 328–335.PubMedGoogle Scholar
  30. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186.PubMedGoogle Scholar
  31. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31.PubMedGoogle Scholar
  32. Forsberg, F., Goldberg, B. B., Liu, J. B., Merton, D. A., Rawool, N. M., and Shi, W. T. (1999). Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology 210, 125–132.PubMedGoogle Scholar
  33. Franklin, D. L., Schlegel, W., and Rushmer, R. F. (1961). Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134, 564–565.PubMedGoogle Scholar
  34. Fry, W. J., Mosberg, W. H., Jr., Barnard, J. W., and Fry, F. J. (1954). Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11, 471–478.PubMedGoogle Scholar
  35. Gasparini, G., Brooks, P. C., Biganzoli, E., Vermeulen, P. B., Bonoldi, E., Dirix, L. Y., Ranieri, G., Miceli, R., and Cheresh, D. A. (1998). Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 4, 2625–2634.PubMedGoogle Scholar
  36. Gerber, H.-P., Kowalski, J, Sherman, D, et al. (2000). Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Research 60, 6253–6258.PubMedGoogle Scholar
  37. Gonzalez, A. M., Gonzales, M., Herron, G. S., Nagavarapu, U., Hopkinson, S. B., Tsuruta, D., and Jones, J. C. (2002). Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc Natl Acad Sci U S A 99, 16075–16080.PubMedGoogle Scholar
  38. Gossmann, A., Helbich, T. H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D. M., van Bruggen, N., Wendland, M. F., Israel, M. A., and Brasch, R. C. (2002). Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15, 233–240.PubMedGoogle Scholar
  39. Gramiak, R., and Shah, P. M. (1968). Echocardiography of the aortic root. Invest Radiol 3, 356–366.PubMedGoogle Scholar
  40. Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., Scheppke, L., Stockmann, C., Johnson, R. S., Angle, N., and Cheresh, D. A. (2008). A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813.PubMedGoogle Scholar
  41. Griffioen, A. W., Coenen, M. J., Damen, C. A., Hellwig, S. M., van Weering, D. H., Vooys, W., Blijham, G. H., and Groenewegen, G. (1997). CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90, 1150–1159.PubMedGoogle Scholar
  42. Hagemeier, H.-H., Vollmer, E., Goerdt, S., Schulze-Osthoff, K., and Sorg, C. (1986). A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. Int J Cancer 38, 481–488.PubMedGoogle Scholar
  43. Harvey, C. J., Blomley, M. J., Eckersley, R. J., Heckemann, R. A., Butler-Barnes, J., and Cosgrove, D. O. (2000). Pulse-inversion mode imaging of liver specific microbubbles: improved detection of subcentimetre metastases. Lancet 355, 807–808.PubMedGoogle Scholar
  44. Ismail, S., Jayaweera, A. R., Camarano, G., Gimple, L. W., Powers, E. R., and Kaul, S. (1996). Relation between air-filled albumin microbubble and red blood cell rheology in the human myocardium. Influence of echocardiographic systems and chest wall attenuation. Circulation 94, 445–451.PubMedGoogle Scholar
  45. Jaffe, C. C. (2006). Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24, 3245–3251.PubMedGoogle Scholar
  46. Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7, 987–989.PubMedGoogle Scholar
  47. Jain, R. K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.PubMedGoogle Scholar
  48. Jubb, A. M., Oates, A. J., Holden, S., and Koeppen, H. (2006). Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6, 626–635.PubMedGoogle Scholar
  49. Ke, L., Qu, H., Nagy, J. A., Eckelhoefer, I. A., Masse, E. M., Dvorak, A. M., and Dvorak, H. F. (1996). Vascular targeting of solid and ascites tumours with antibodies to vascular endothelial growth factor. Eur J Cancer 32A, 2467–2473.Google Scholar
  50. Kim, S., Bell, K., Mousa, S. A., and Varner, J. A. (2000a). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156, 1345–1362.PubMedGoogle Scholar
  51. Kim, T. K., Choi, B. I., Han, J. K., Hong, H. S., Park, S. H., and Moon, S. G. (2000b). Hepatic tumors: contrast agent-enhancement patterns with pulse-inversion harmonic US. Radiology 216, 411–417.PubMedGoogle Scholar
  52. Kim, D. W., Huamani, J., Niermann, K. J., Lee, H., Geng, L., Leavitt, L. L., Baheza, R. A., Jones, C. C., Tumkur, S., Yankeelov, T. E., et al. (2006). Noninvasive assessment of tumor vasculature response to radiation-mediated, vasculature-targeted therapy using quantified power Doppler sonography: implications for improvement of therapy schedules. J Ultrasound Med 25, 1507–1517.PubMedGoogle Scholar
  53. Koch, A. E., Nickoloff, B. J., Holgersson, J., Seed, B., Haines, G. K., Burrows, J. C., and Leibovich, S. J. (1994). 4A11, a monoclonal antibody recognizing a novel antigen expressed on aberrant vascular endothelium. Upregulation in an in vivo model of contact dermatitis. Am J Pathol 144, 244–259.PubMedGoogle Scholar
  54. Korpanty, G., Grayburn, P. A., Shohet, R. V., and Brekken, R. A. (2005). Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31, 1279–1283.PubMedGoogle Scholar
  55. Korpanty, G., Carbon, J. G., Grayburn, P. A., Fleming, J. B., and Brekken, R. A. (2007). Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13, 323–330.PubMedGoogle Scholar
  56. Krix, M. (2005). Quantification of enhancement in contrast ultrasound: a tool for monitoring of therapies in liver metastases. Eur Radiol 15 Suppl 5, E104–108.PubMedGoogle Scholar
  57. Krix, M., Plathow, C., Essig, M., Herfarth, K., Debus, J., Kauczor, H. U., and Delorme, S. (2005). Monitoring of liver metastases after stereotactic radiotherapy using low-MI contrast-enhanced ultrasound – initial results. Eur Radiol 15, 677–684.PubMedGoogle Scholar
  58. Lanza, G. M., and Wickline, S. A. (2001). Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44, 13–31.PubMedGoogle Scholar
  59. Leach, M. O., Brindle, K. M., Evelhoch, J. L., Griffiths, J. R., Horsman, M. R., Jackson, A., Jayson, G., Judson, I. R., Knopp, M. V., Maxwell, R. J., et al. (2003). Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76 Spec No 1, S87–91.Google Scholar
  60. Lee, D. J., Lyshchik, A., Huamani, J., Hallahan, D. E., and Fleischer, A. C. (2008). Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 27, 855–866.PubMedGoogle Scholar
  61. Lindner, J. R., Coggins, M. P., Kaul, S., Klibanov, A. L., Brandenburger, G. H., and Ley, K. (2000a). Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 101, 668–675.PubMedGoogle Scholar
  62. Lindner, J. R., Dayton, P. A., Coggins, M. P., Ley, K., Song, J., Ferrara, K., and Kaul, S. (2000b). Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102, 531–538.PubMedGoogle Scholar
  63. Lindner, J. R., Song, J., Christiansen, J., Klibanov, A. L., Xu, F., and Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104, 2107–2112.PubMedGoogle Scholar
  64. Liu, N., Lapcevich, R. K., Underhill, C. B., Han, Z., Gao, F., Swartz, G., Plum, S. M., Zhang, L., and Green, S. J. (2001). Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res 61, 1022–1028.PubMedGoogle Scholar
  65. Lodge, M. A., Carson, R. E., Carrasquillo, J. A., Whatley, M., Libutti, S. K., and Bacharach, S. L. (2000). Parametric images of blood flow in oncology PET studies using [15O]water. J Nucl Med 41, 1784–1792.PubMedGoogle Scholar
  66. Lyshchik, A., Fleischer, A. C., Huamani, J., Hallahan, D. E., Brissova, M., and Gore, J. C. (2007). Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. J Ultrasound Med 26, 1575–1586.PubMedGoogle Scholar
  67. Marty, C., Odermatt, B., Schott, H., Neri, D., Ballmer-Hofer, K., Klemenz, R., and Schwendener, R. A. (2002). Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 87, 106–112.PubMedGoogle Scholar
  68. McDonald, D. M., and Choyke, P. L. (2003). Imaging of angiogenesis: from microscope to clinic. Nat Med 9, 713–725.PubMedGoogle Scholar
  69. Miller, J. C., Pien, H. H., Sahani, D., Sorensen, A. G., and Thrall, J. H. (2005). Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97, 172–187.PubMedGoogle Scholar
  70. Molema, G., Meijer, D. K., and de Leij, L. F. (1998). Tumor vasculature targeted therapies: getting the players organized. Biochem Pharmacol 55, 1939–1945.PubMedGoogle Scholar
  71. Morgan, K. E., Allen, J. S., Dayton, P. A., Chomas, J. E., Klibaov, A. L., and Ferrara, K. W. (2000). Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelectr Freq Control 47, 1494–1509.PubMedGoogle Scholar
  72. Morgan, B., Thomas, A. L., Drevs, J., Hennig, J., Buchert, M., Jivan, A., Horsfield, M. A., Mross, K., Ball, H. A., Lee, L., et al. (2003). Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21, 3955–3964.PubMedGoogle Scholar
  73. Niermann, K. J., Fleischer, A. C., Huamani, J., Yankeelov, T. E., Kim, D. W., Wilson, W. D., and Hallahan, D. E. (2007). Measuring tumor perfusion in control and treated murine tumors: co­rrelation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced m­agnetic resonance imaging and fluorodeoxyglucose positron emission tomography. J Ultrasound Med 26, 749–756.PubMedGoogle Scholar
  74. Nilsson, F., Kosmehl, H., Zardi, L., and Neri, D. (2001). Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 61, 711–716.PubMedGoogle Scholar
  75. Padhani, A. R., and Leach, M. O. (2005). Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30, 324–341.PubMedGoogle Scholar
  76. Palmowski, M., Huppert, J., Ladewig, G., Hauff, P., Reinhardt, M., Mueller, M. M., Woenne, E. C., Jenne, J. W., Maurer, M., Kauffmann, G. W., et al. (2008). Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7, 101–109.PubMedGoogle Scholar
  77. Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1997). Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15, 542–546.PubMedGoogle Scholar
  78. Pasqualini, R., Koivunen, E., Kain, R., Lahdenranta, J., Sakamoto, M., Stryhn, A., Ashmun, R. A., Shapiro, L. H., Arap, W., and Ruoslahti, E. (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60, 722–727.PubMedGoogle Scholar
  79. Pollard, R. E., Garcia, T. C., Stieger, S. M., Ferrara, K. W., Sadlowski, A. R., and Wisner, E. R. (2004). Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography. Invest Radiol 39, 340–349.PubMedGoogle Scholar
  80. Provenzale, J. M. (2007). Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol 188, 11–23.PubMedGoogle Scholar
  81. Ran, S., and Thorpe, P. E. (2002). Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54, 1479–1484.PubMedGoogle Scholar
  82. Ran, S., He, J., Huang, X., Soares, M., Scothorn, D., and Thorpe, P. E. (2005). Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11, 1551–1562.PubMedGoogle Scholar
  83. Rettig, W. J., Garinchesa, P., Healey, J. H., Su, S. L., Jaffe, E. A., and Old, L. J. (1992). Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci U S A 89, 10832–10836.PubMedGoogle Scholar
  84. Rosen, M. A., and Schnall, M. D. (2007). Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 13, 770s-776s.PubMedGoogle Scholar
  85. Salnikov, A. V., Heldin, N. E., Stuhr, L. B., Wiig, H., Gerber, H., Reed, R. K., and Rubin, K. (2006). Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int J Cancer 119, 2795–2802.PubMedGoogle Scholar
  86. Senger, D. R., Claffey, K. P., Benes, J. E., Perruzzi, C. A., Sergiou, A. P., and Detmar, M. (1997). Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 94, 13612–13617.PubMedGoogle Scholar
  87. Senger, D. R., Perruzzi, C. A., Streit, M., Koteliansky, V. E., de Fougerolles, A. R., and Detmar, M. (2002). The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160, 195–204.PubMedGoogle Scholar
  88. Seon, B. K., Matsuno, F., Haruta, Y., Kondo, M., and Barcos, M. (1997). Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res 3, 1031–1044.PubMedGoogle Scholar
  89. Sessa, C., Guibal, A., Del Conte, G., and Ruegg, C. (2008). Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 5, 378–391.PubMedGoogle Scholar
  90. Shaked, Y., Bertolini, F., Man, S., Rogers, M. S., Cervi, D., Foutz, T., Rawn, K., Voskas, D., Dumont, D. J., Ben-David, Y., et al. (2005). Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101–111.PubMedGoogle Scholar
  91. Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., and Li, K. C. (1998). Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4, 623–626.PubMedGoogle Scholar
  92. Soares, M. M., King, S. W., and Thorpe, P. E. (2008). Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat Med 14, 1357–1362.PubMedGoogle Scholar
  93. St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., Lal, A., Riggins, G. J., Lengauer, C., Vogelstein, B., and Kinzler, K. W. (2000). Genes expressed in human tumor endothelium. Science 289, 1197–1202.PubMedGoogle Scholar
  94. Thorpe, P. E., and Burrows, F. J. (1995). Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer ResTreat 36, 237–251.Google Scholar
  95. Tofts, P. S., Brix, G., Buckley, D. L., Evelhoch, J. L., Henderson, E., Knopp, M. V., Larsson, H. B., Lee, T. Y., Mayr, N. A., Parker, G. J., et al. (1999). Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10, 223–232.PubMedGoogle Scholar
  96. Tomillero, A., and Moral, M. A. (2008). Gateways to clinical trials. Methods Find Exp Clin Pharmacol 30, 643–672.PubMedGoogle Scholar
  97. Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., and Jain, R. K. (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64, 3731–3736.PubMedGoogle Scholar
  98. Tsushima, Y., Funabasama, S., Aoki, J., Sanada, S., and Endo, K. (2004). Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data. Acad Radiol 11, 215–223.PubMedGoogle Scholar
  99. Villanueva, F. S., and Wagner, W. R. (2008). Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5 Suppl 2, S26–32.PubMedGoogle Scholar
  100. Villanueva, F. S., Jankowski, R. J., Manaugh, C., and Wagner, W. R. (1997). Albumin microbubble adherence to human coronary endothelium: implications for assessment of endothelial function using myocardial contrast echocardiography. J Am Coll Cardiol 30, 689–693.PubMedGoogle Scholar
  101. Villanueva, F. S., Jankowski, R. J., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C., Brandenburger, G. H., and Wagner, W. R. (1998). Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98, 1–5.PubMedGoogle Scholar
  102. Wang, J. M., Kumar, S., Pye, D., Vanagthoven, A. J., Krupinski, J., and Hunter, R. D. (1993). A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 54, 363–370.PubMedGoogle Scholar
  103. Wang, J. M., Kumar, S., van Agthoven, A., Kumar, P., Pye, D., and Hunter, R. D. (1995). Irradiation induces up-regulation of E9 protein (CD105) in human vascular endothelial cells. Int J Cancer 62, 791–796.PubMedGoogle Scholar
  104. Weller, G. E., Villanueva, F. S., Tom, E. M., and Wagner, W. R. (2005). Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 92, 780–788.PubMedGoogle Scholar
  105. Westphal, J. R., Willems, H. W., Schalkwijk, C. J., Ruiter, D. J., and deWaal, R. M. (1993). A new 180-kDa dermal endothelial cell activation antigen: in vitro and in situ characteristics. J Invest Dermatol 100, 27–34.PubMedGoogle Scholar
  106. Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., Chung, D. C., Sahani, D. V., Kalva, S. P., Kozin, S. V., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10, 145–147.PubMedGoogle Scholar
  107. Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., and Gambhir, S. S. (2008). Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 248, 936–944.PubMedGoogle Scholar
  108. Winter, P. M., Caruthers, S. D., Kassner, A., Harris, T. D., Chinen, L. K., Allen, J. S., Lacy, E. K., Zhang, H., Robertson, J. D., Wickline, S. A., and Lanza, G. M. (2003). Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63, 5838–5843.PubMedGoogle Scholar
  109. Xu, J., Rodriguez, D., Kim, J. J., and Brooks, P. C. (2000). Generation of monoclonal antibodies to cryptic collagen sites by using subtractive immunization. Hybridoma 19, 375–385.PubMedGoogle Scholar
  110. Xu, J., Rodriguez, D., Petitclerc, E., Kim, J. J., Hangai, M., Moon, Y. S., Davis, G. E., Brooks, P. C., and Yuen, S. M. (2001). Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154, 1069–1079.PubMedGoogle Scholar
  111. Yankeelov, T. E., Niermann, K. J., Huamani, J., Kim, D. W., Quarles, C. C., Fleischer, A. C., Hallahan, D. E., Price, R. R., and Gore, J. C. (2006). Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging. J Ultrasound Med 25, 487–497.PubMedGoogle Scholar
  112. Zhu, A. X., Holalkere, N. S., Muzikansky, A., Horgan, K., and Sahani, D. V. (2008). Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist 13, 120–125.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Surgical Oncology, Departments of Surgery and Pharmacology, The Hamon Center for Therapeutic Oncology ResearchUT Southwestern Medical CenterDallasUSA

Personalised recommendations