Advertisement

Development of Vascular Disrupting Agents

Chapter

Abstract

The majority of the cancer therapies in use today target the malignant cell population. In broad terms, specificity is achieved by exploiting intrinsic differences between normal cells and tumor cells with respect to various key processes including proliferative activity, DNA repair and responsiveness to apoptotic stimuli. Although progress continues to be made, it remains the case that chemotherapy alone is rarely curative. Thus, in recent years increased interest has focused on alternative strategies that instead target various normal cell types upon which the survival and growth of a tumor depends. In this chapter we explore the historical events that lead to development of vascular disrupting therapies and discuss the major approaches currently employed to selectively destroy the neovasculature of solid tumors.

Keywords

Maximum Tolerate Dose Arsenic Trioxide Vascular Endothelial Cell Growth Factor Testicular Torsion Tumor Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aitken RA, Bibby MC, Bielefeldt F, Double JA, Laws AL, Mathieu AL, Ritchie RB, Wilson DW (1998) Synthesis and antitumour activity of new derivatives of flavone-8-acetic acid (FAA). Part 3: 2-Heteroaryl derivatives. Arch Pharm (Weinheim) 331:405–411CrossRefGoogle Scholar
  2. Alghisi GC, Ponsonnet L, Ruegg C (2009) The integrin antagonist cilengitide activates alphaVbeta3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS One 4:e4449PubMedCrossRefGoogle Scholar
  3. Algire GH, Legallais FY, Anderson BF (1952) Vascular reactions of normal and malignant tissues in vivo. V. Role of hypotension in the action of bacterial polysaccharide on tumors. J Natl Cancer Inst 12:1279–1295PubMedGoogle Scholar
  4. Anton K, Glod J (2009) Targeting the tumor stroma in cancer therapy. Curr Pharm Biotechnol 10:185–191PubMedCrossRefGoogle Scholar
  5. Arnberg N (2009) Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19:165–178PubMedCrossRefGoogle Scholar
  6. Baguley BC (2001) Small-molecule cytokine inducers causing tumor necrosis. Curr Opin Investig Drugs 2:967–975PubMedGoogle Scholar
  7. Baguley BC (2003) Antivascular therapy of cancer: DMXAA. Lancet Oncol 4:141–148PubMedCrossRefGoogle Scholar
  8. Baguley BC, Wilson WR (2002) Potential of DMXAA combination therapy for solid tumors. Expert Rev Anticancer Ther 2:593–603PubMedCrossRefGoogle Scholar
  9. Baguley BC, Holdaway KM, Thomsen LL, Zhuang L, Zwi LJ (1991) Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 27:482–487PubMedCrossRefGoogle Scholar
  10. Baka S, Clamp AR, Jayson GC (2006) A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 10:867–876PubMedCrossRefGoogle Scholar
  11. Baker AH, Kritz A, Work LM, Nicklin SA (2005) Cell-selective viral gene delivery vectors for the vasculature. Exp Physiol 90:27–31PubMedCrossRefGoogle Scholar
  12. Balkwill FR (1989) Tumour necrosis factor. Br Med Bull 45:389–400PubMedGoogle Scholar
  13. Balza E, Mortara L, Sassi F, Monteghirfo S, Carnemolla B, Castellani P, Neri D, Accolla RS, Zardi L, Borsi L (2006) Targeted delivery of tumor necrosis factor-alpha to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 12:2575–2582PubMedCrossRefGoogle Scholar
  14. Beck AW, Luster TA, Miller AF, Holloway SE, Conner CR, Barnett CC, Thorpe PE, Fleming JB, Brekken RA (2006) Combination of a monoclonal anti-phosphatidylserine antibody with gemcitabine strongly inhibits the growth and metastasis of orthotopic pancreatic tumors in mice. Int J Cancer 118:2639–2643PubMedCrossRefGoogle Scholar
  15. Beerepoot LV, Radema SA, Witteveen EO, Thomas T, Wheeler C, Kempin S, Voest EE (2006) Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol 24:1491–1498PubMedCrossRefGoogle Scholar
  16. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975PubMedCrossRefGoogle Scholar
  17. Billard C, Menasria F, Quiney C, Faussat AM, Finet JP, Combes S, Kolb JP (2008) 4-arylcoumarin analogues of combretastatins stimulate apoptosis of leukemic cells from chronic lymphocytic leukemia patients. Exp Hematol 36:1625–1633PubMedCrossRefGoogle Scholar
  18. Blakey DC, Ashton SE, Westwood FR, Walker M, Ryan AJ (2002a) ZD6126: a novel small molecule vascular targeting agent. Int J Radiat Oncol Biol Phys 54:1497–1502PubMedCrossRefGoogle Scholar
  19. Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ (2002b) Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 8:1974–1983PubMedGoogle Scholar
  20. Blaschuk OW, Rowlands TM (2000) Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev 19:1–5PubMedCrossRefGoogle Scholar
  21. Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392PubMedCrossRefGoogle Scholar
  22. Boyland E, Boyland ME (1937) Studies in tissue metabolism: the action of colchicine and B. typhosus extract. Biochem J 31:454–460PubMedGoogle Scholar
  23. Boyland E, Boyland ME (1940) Studies in tissue metabolism: the action of colchicine on transplanted, induced and spontaneous mouse tumours. Biochem J 34:280–284PubMedGoogle Scholar
  24. Busch W (1866) Einfluβ von erysipel. Beliner Klin Wschr 3:245–246Google Scholar
  25. Cai SX (2007) Small molecule vascular disrupting agents: potential new drugs for cancer treatment. Recent Pat Anticancer Drug Discov 2:79–101PubMedCrossRefGoogle Scholar
  26. Cao Y (2009) Tumor angiogenesis and molecular targets for therapy. Front Biosci 14:3962–3973PubMedCrossRefGoogle Scholar
  27. Carpenito C, Davis PD, Dougherty ST, Dougherty GJ (2002) Exploiting the differential production of angiogenic factors within the tumor microenvironment in the design of a novel vascular-targeted gene therapy-based approach to the treatment of cancer. Int J Radiat Oncol Biol Phys 54:1473–1478PubMedCrossRefGoogle Scholar
  28. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670PubMedCrossRefGoogle Scholar
  29. Chaplin DJ, Hill SA (2002) The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys 54:1491–1496PubMedCrossRefGoogle Scholar
  30. Chaplin DJ, Horsman MR (1994a) The effect of artificially induced ischemia on tumour cell survival. Adv Exp Med Biol 345:437–443PubMedCrossRefGoogle Scholar
  31. Chaplin DJ, Horsman MR (1994b) The influence of tumour temperature on ischemia-induced cell death: potential implications for the evaluation of vascular mediated therapies. Radiother Oncol 30:59–65PubMedCrossRefGoogle Scholar
  32. Chaplin DJ, Olive PL, Durand RE (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47:597–601PubMedGoogle Scholar
  33. Chaplin DJ, Pettit GR, Parkins CS, Hill SA (1996) Antivascular approaches to solid tumour therapy: evaluation of tubulin binding agents. Br J Cancer Suppl 27:S86–S88PubMedGoogle Scholar
  34. Chaplin DJ, Horsman MR, Siemann DW (2006) Current development status of small-molecule vascular disrupting agents. Curr Opin Investig Drugs 7:522–528PubMedGoogle Scholar
  35. Chase JL (2008) Clinical use of anti-vascular endothelial growth factor monoclonal antibodies in metastatic colorectal cancer. Pharmacotherapy 28:23S–30SPubMedCrossRefGoogle Scholar
  36. Coley WB (1891) Contribution to the knowledge of sarcoma. Ann Surg 14:199–220PubMedCrossRefGoogle Scholar
  37. Coley WB (1914) The treatment of malignant tumors by repeated inoculations of erysipelas and Bacillus prodigiosus. Brussels: M. WeissenbruchGoogle Scholar
  38. Cooney MM, Radivoyevitch T, Dowlati A, Overmoyer B, Levitan N, Robertson K, Levine SL, DeCaro K, Buchter C, Taylor A, Stambler BS, Remick SC (2004) Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer. Clin Cancer Res 10:96–100PubMedCrossRefGoogle Scholar
  39. Cowan PJ, Shinkel TA, Fisicaro N, Godwin JW, Bernabeu C, Almendro N, Rius C, Lonie AJ, Nottle MB, Wigley PL, Paizis K, Pearse MJ, d’Apice AJ (2003) Targeting gene expression to endothelium in transgenic animals: a comparison of the human ICAM-2, PECAM-1 and endoglin promoters. Xenotransplantation 10:223–231PubMedCrossRefGoogle Scholar
  40. Dai C, McAninch RE, Sutton RE (2004) Identification of synthetic endothelial cell-specific promoters by use of a high-throughput screen. J Virol 78:6209–6221PubMedCrossRefGoogle Scholar
  41. Dancer A, Julien S, Bouillot S, Pointu H, Vernet M, Huber P (2003) Expression of thymidine kinase driven by an endothelial-specific promoter inhibits tumor growth of Lewis lung carcinoma cells in transgenic mice. Gene Ther 10:1170–1178PubMedCrossRefGoogle Scholar
  42. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57:1829–1834PubMedGoogle Scholar
  43. Dass CR, Choong PF (2006) Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 113:155–163PubMedCrossRefGoogle Scholar
  44. Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA (2002) ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 62:7247–7253PubMedGoogle Scholar
  45. De Palma M, Venneri MA, Naldini L (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14:1193–1206PubMedCrossRefGoogle Scholar
  46. Demartis S, Tarli L, Borsi L, Zardi L, Neri D (2001) Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 28:534–539PubMedCrossRefGoogle Scholar
  47. Denekamp J (1982) Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer 45:136–139PubMedCrossRefGoogle Scholar
  48. Denekamp J (1984) Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 23:217–225PubMedCrossRefGoogle Scholar
  49. Denekamp J (1990) Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev 9:267–282PubMedCrossRefGoogle Scholar
  50. Denekamp J (1991) The current status of targeting tumour vasculature as a means of cancer therapy: an overview. Int J Radiat Biol 60:401–408PubMedCrossRefGoogle Scholar
  51. Denekamp J (1993) Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66:181–196PubMedCrossRefGoogle Scholar
  52. Denekamp J, Hill SA, Hobson B (1983) Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol 19:271–275PubMedCrossRefGoogle Scholar
  53. Denekamp J, Dasu A, Waites A (1998) Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy? Adv Enzyme Regul 38:281–299PubMedCrossRefGoogle Scholar
  54. Dickens DS, Jubinsky PT (2009) Therapeutic strategies for targeting mononuclear phagocytes in cancer. J Pediatr Hematol Oncol 31:14–17PubMedCrossRefGoogle Scholar
  55. Dienst A, Grunow A, Unruh M, Rabausch B, Nor JE, Fries JW, Gottstein C (2005) Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J Natl Cancer Inst 97:733–747PubMedCrossRefGoogle Scholar
  56. Dong Z, Nor JE (2009) Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev 61:542–552PubMedCrossRefGoogle Scholar
  57. Dougherty GJ, Dougherty ST (2009) Exploiting the tumor microenvironment in the development of targeted cancer gene therapy. Cancer Gene Ther 16:279–290PubMedGoogle Scholar
  58. Dougherty GJ, Davis PD, Dougherty ST (2004) Vascular-targeted cancer gene therapy. Expert Opin Biol Ther 4:1911–1920PubMedCrossRefGoogle Scholar
  59. Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, Rafie N, Overmoyer B, Makkar V, Stambler B, Taylor A, Waas J, Lewin JS, McCrae KR, Remick SC (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62:3408–3416PubMedGoogle Scholar
  60. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRefGoogle Scholar
  61. Edelstein ML, Abedi MR, Wixon J, Edelstein RM (2004) Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med 6:597–602PubMedCrossRefGoogle Scholar
  62. el-Zayat AA, Degen D, Drabek S, Clark GM, Pettit GR, Von Hoff DD (1993) In vitro evaluation of the antineoplastic activity of combretastatin A-4, a natural product from Combretum caffrum (arid shrub). Anticancer Drugs 4:19–25PubMedCrossRefGoogle Scholar
  63. Enback J, Laakkonen P (2007) Tumour-homing peptides: tools for targeting, imaging and destruction. Biochem Soc Trans 35:780–783PubMedCrossRefGoogle Scholar
  64. Enderlen E (1896) Klinische und experimentelle Studien zur Frage der Torsion des Hodens. Dtsch Z Chir 43:177CrossRefGoogle Scholar
  65. Fang L, Shen L, Fang Y, Hu Y, He Q, Yang B (2008) MZ3 can induce G2/M-phase arrest and apoptosis in human leukemia cells. J Cancer Res Clin Oncol 134:1337–1345PubMedCrossRefGoogle Scholar
  66. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ (2000) Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 60:4066–4069PubMedGoogle Scholar
  67. Fitzwilliams DCL (1927) The treatment of carcinoma by lead colloids. Br Med J 1:822CrossRefGoogle Scholar
  68. Flick DA, Gifford GE (1986) Production of tumor necrosis factor in unprimed mice: mechanism of endotoxin-mediated tumor necrosis. Immunobiology 171:320–328PubMedCrossRefGoogle Scholar
  69. Folkman J (1999) Angiogenic zip code. Nat Biotechnol 17:749PubMedCrossRefGoogle Scholar
  70. Follin F (1852) De la cryptorchidie chez l’homme Mem Soc BiolGoogle Scholar
  71. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84PubMedCrossRefGoogle Scholar
  72. Gafner V, Trachsel E, Neri D (2006) An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 119:2205–2212PubMedCrossRefGoogle Scholar
  73. Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM (2001) Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 21:93–102PubMedGoogle Scholar
  74. Gavard J (2009) Breaking the VE-cadherin bonds. FEBS Lett 583:1–6PubMedCrossRefGoogle Scholar
  75. Gaya AM, Rustin GJ (2005) Vascular disrupting agents: a new class of drug in cancer therapy. Clin Oncol (R Coll Radiol) 17:277–290CrossRefGoogle Scholar
  76. Gotlieb AI (1990) The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol Pathol 18:603–617PubMedGoogle Scholar
  77. Gould S, Westwood FR, Curwen JO, Ashton SE, Roberts DW, Lovick SC, Ryan AJ (2007) Effect of pretreatment with atenolol and nifedipine on ZD6126-induced cardiac toxicity in rats. J Natl Cancer Inst 99:1724–1728PubMedCrossRefGoogle Scholar
  78. Graulich W, Nettelbeck DM, Fischer D, Kissel T, Muller R (1999) Cell type specificity of the human endoglin promoter. Gene 227:55–62PubMedCrossRefGoogle Scholar
  79. Greenberger S, Shaish A, Varda-Bloom N, Levanon K, Breitbart E, Goldberg I, Barshack I, Hodish I, Yaacov N, Bangio L, Goncharov T, Wallach D, Harats D (2004) Transcription-controlled gene therapy against tumor angiogenesis. J Clin Invest 113:1017–1024PubMedGoogle Scholar
  80. Gresser I (1987) A. Chekhov, M.D., and Coley’s toxins. N Engl J Med 317:457PubMedGoogle Scholar
  81. Griffin RJ, Monzen H, Williams BW, Park H, Lee SH, Song CW (2003) Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours. Int J Hyperthermia 19:575–589PubMedCrossRefGoogle Scholar
  82. Grothey A, Ellis LM (2008) Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J 14:170–177PubMedCrossRefGoogle Scholar
  83. Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16:80–88PubMedCrossRefGoogle Scholar
  84. Hanna E, Quick J, Libutti SK (2009) The tumour microenvironment: a novel target for cancer therapy. Oral Dis 15:8–17PubMedCrossRefGoogle Scholar
  85. He J, Luster TA, Thorpe PE (2007) Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin Cancer Res 13:5211–5218PubMedCrossRefGoogle Scholar
  86. Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6:395–404PubMedCrossRefGoogle Scholar
  87. Hellner H (1933) Die örtlichen Kreislaufstörungen des Hodens. Bruns Beitr Klin Chir 158:225Google Scholar
  88. Hill SA, Lonergan SJ, Denekamp J, Chaplin DJ (1994) The effect of vinca alkaloids on tumour blood flow. Adv Exp Med Biol 345:417–422PubMedCrossRefGoogle Scholar
  89. Hinnen P, Eskens FA (2007) Vascular disrupting agents in clinical development. Br J Cancer 96:1159–1165PubMedCrossRefGoogle Scholar
  90. Hodish I, Tal R, Shaish A, Varda-Bloom N, Greenberger S, Rauchwerger A, Breitbart E, Bangio L, Ben-Shushan D, Pfeffer R, Feder B, Waitsman A, Barshack I, Goldberg I, Mazaki-Tovi S, Peled M, Harats D (2009) Systemic administration of radiation-potentiated anti-angiogenic gene therapy against primary and metastatic cancer based on transcriptionally controlled HSV-TK. Cancer Biol Ther 8:424–432PubMedCrossRefGoogle Scholar
  91. Hoption Cann SA, van Netten JP, van Netten C, Glover DW (2002) Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 58:115–119PubMedCrossRefGoogle Scholar
  92. Hoption Cann SA, van Netten JP, van Netten C (2003) Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J 79:672–680PubMedGoogle Scholar
  93. Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23:661–667PubMedCrossRefGoogle Scholar
  94. Huang X, Bennett M, Thorpe PE (2005) A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 65:4408–4416PubMedCrossRefGoogle Scholar
  95. Hundsberger H, Verin A, Wiesner C, Pfluger M, Dulebo A, Schutt W, Lasters I, Mannel DN, Wendel A, Lucas R (2008) TNF: a moonlighting protein at the interface between cancer and infection. Front Biosci 13:5374–5386PubMedCrossRefGoogle Scholar
  96. Jager U, Zhao Y, Porter CD (1999) Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 73:9702–9709PubMedGoogle Scholar
  97. Lippert JW, III (2007) Vascular disrupting agents. Bioorg Med Chem 15:605–615PubMedCrossRefGoogle Scholar
  98. Kaspar M, Trachsel E, Neri D (2007) The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 67:4940–4948PubMedCrossRefGoogle Scholar
  99. Kelland L (2007) Drug evaluation: ADH-1, an N-cadherin antagonist targeting cancer vascularization. Curr Opin Mol Ther 9:86–91PubMedGoogle Scholar
  100. Kesmodel SB, Spitz FR (2003) Gene therapy for cancer and metastatic disease. Expert Rev Mol Med 5:1–18PubMedCrossRefGoogle Scholar
  101. Kiaris H, Trimis G, Papavassiliou AG (2008) Regulation of tumor-stromal fibroblast interactions: implications in anticancer therapy. Curr Med Chem 15:3062–3067PubMedCrossRefGoogle Scholar
  102. Klagsbrun M, Moses MA (2008) Obituary: M. Judah Folkman (1933–2008). Nature 451:781PubMedCrossRefGoogle Scholar
  103. Kouraklis G (1999) Progress in cancer gene therapy. Acta Oncol 38:675–683PubMedCrossRefGoogle Scholar
  104. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT (1998) Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 72:1844–1852PubMedGoogle Scholar
  105. Kuckleburg CJ, Tiwari R, Czuprynski CJ (2008) Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb Haemost 99:363–372PubMedGoogle Scholar
  106. Kuhn H, Konrad J, Holtz S, Salameh A, Gessner C, Hammerschmidt S, Wirtz H (2006) Enhanced expression of VEGF following bFGF inhibition in non-small cell lung cancer cell lines. Lung Cancer 54:149–153PubMedCrossRefGoogle Scholar
  107. Lee JS, Gotlieb AI (2005) Microtubules regulate aortic endothelial cell actin microfilament reorganization in intact and repairing monolayers. Histol Histopathol 20:455–465PubMedGoogle Scholar
  108. Leiter J, Downing V, Hartwell JL, Shear MJ (1950) Damage induced in sarcoma 37 with podophyllin, podophyllotoxin alpha-peltatin, beta-peltatin, and quercetin. J Natl Cancer Inst 10:1273–1293PubMedGoogle Scholar
  109. Leiter J, Downing V, Hartwell JL, Shear MJ (1952) Damage induced in sarcoma 37 with chemical agents. II. Trivalent and pentavalent arsenicals. J Natl Cancer Inst 13:365–378PubMedGoogle Scholar
  110. Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59:6033–6037PubMedGoogle Scholar
  111. Li YM, Broome JD (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 59:776–780PubMedGoogle Scholar
  112. Li H, Price DK, Figg WD (2007) ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs 18:563–568PubMedCrossRefGoogle Scholar
  113. Liu Y, Deisseroth A (2006) Tumor vascular targeting therapy with viral vectors. Blood 107:3027–3033PubMedCrossRefGoogle Scholar
  114. London NR, Whitehead KJ, Li DY (2009) Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis 12:149–158PubMedCrossRefGoogle Scholar
  115. Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130:1091–1103PubMedCrossRefGoogle Scholar
  116. LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, DeLuca PA, Evelhoch JL, Boerner SA, Wheeler C (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 26:159–167PubMedCrossRefGoogle Scholar
  117. Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, Chen RS, Muller GW, Hughes CC, Stirling DI, Schafer PH, Bartlett JB (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86PubMedCrossRefGoogle Scholar
  118. Ludford RJ (1948) Factors determining the action of colchicine on tumour growth. Br J Cancer 2:75–86PubMedCrossRefGoogle Scholar
  119. Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG, Thorpe PE (2006) Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 281:29863–29871PubMedCrossRefGoogle Scholar
  120. Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA Cancer J Clin 59:111–137PubMedCrossRefGoogle Scholar
  121. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621PubMedCrossRefGoogle Scholar
  122. Mariotti A, Perotti A, Sessa C, Ruegg C (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16:451–465PubMedCrossRefGoogle Scholar
  123. Mbeunkui F, Johann DJJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582PubMedCrossRefGoogle Scholar
  124. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMedGoogle Scholar
  125. McKeage MJ (2008) The potential of DMXAA (ASA404) in combination with docetaxel in advanced prostate cancer. Expert Opin Investig Drugs 17:23–29PubMedCrossRefGoogle Scholar
  126. McKeage MJ, Von Pawel J, Reck M, Jameson MB, Rosenthal MA, Sullivan R, Gibbs D, Mainwaring PN, Serke M, Lafitte JJ, Chouaid C, Freitag L, Quoix E (2008) Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 99:2006–2012PubMedCrossRefGoogle Scholar
  127. McKeage MJ, Reck M, Jameson MB, Rosenthal MA, Gibbs D, Mainwaring PN, Freitag L, Sullivan R, Von Pawel J (2009) Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 65:192–197PubMedCrossRefGoogle Scholar
  128. Miflet J (1879) Über die pathologischen Veränderungen des Hodens, welche durch Störungen der lokalen Blutzirkulation veranlaßt werden Arch Klin Chir 24:399Google Scholar
  129. Mohamedali KA, Kedar D, Sweeney P, Kamat A, Davis DW, Eve BY, Huang S, Thorpe PE, Dinney CP, Rosenblum MG (2005) The vascular-targeting fusion toxin VEGF121/rGel inhibits the growth of orthotopic human bladder carcinoma tumors. Neoplasia 7:912–920PubMedCrossRefGoogle Scholar
  130. Mottram JC (1923) Observations on the combined action of colloidal lead and radiation on tumours. Br Med J 1:132–133CrossRefGoogle Scholar
  131. Nabel EG, Plautz G, Nabel GJ (1991) Gene transfer into vascular cells. J Am Coll Cardiol 17:189B–194BPubMedCrossRefGoogle Scholar
  132. Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF, Baker AH (2001) Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 38:65–70PubMedCrossRefGoogle Scholar
  133. Nicklin SA, White SJ, Nicol CG, Von Seggern DJ, Baker AH (2004) In vitro and in vivo characterisation of endothelial cell selective adenoviral vectors. J Gene Med 6:300–308PubMedCrossRefGoogle Scholar
  134. Nikitenko LL (2009) Vascular endothelium in cancer. Cell Tissue Res 335:223–240PubMedCrossRefGoogle Scholar
  135. Noske HD, Kraus SW, Altinkilic BM, Weidner W (1998) Historical milestones regarding torsion of the scrotal organs. J Urol 159:13–16PubMedCrossRefGoogle Scholar
  136. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCrossRefGoogle Scholar
  137. Parker AL, Fisher KD, Oupicky D, Read ML, Nicklin SA, Baker AH, Seymour LW (2005) Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. J Drug Target 13:39–51PubMedCrossRefGoogle Scholar
  138. Parkins CS, Hill SA, Lonergan SJ, Horsman MR, Chadwick JA, Chaplin DJ (1994) Ischaemia induced cell death in tumors: importance of temperature and pH. Int J Radiat Oncol Biol Phys 29:499–503PubMedCrossRefGoogle Scholar
  139. Pasqualini R, Arap W (2002) Translation of vascular diversity into targeted therapeutics. Ann Hematol 81 Suppl 2:S66–S67PubMedGoogle Scholar
  140. Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, Carcangiu ML, Passera K, Braghetti A, Scaramuzza D, Zanaboni F, Fasolo A, Capri G, Miani M, Peters WP, Gianni L (2009) Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 20:741–745PubMedCrossRefGoogle Scholar
  141. Petit I, Karajannis MA, Vincent L, Young L, Butler J, Hooper AT, Shido K, Steller H, Chaplin DJ, Feldman E, Rafii S (2008) The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood 111:1951–1961PubMedCrossRefGoogle Scholar
  142. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45:209–211PubMedCrossRefGoogle Scholar
  143. Philpott M, Joseph WR, Crosier KE, Baguley BC, Ching LM (1997) Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br J Cancer 76:1586–1591PubMedCrossRefGoogle Scholar
  144. Philpott M, Ching LM, Baguley BC (2001) The antitumour agent 5,6-dimethylxanthenone-4-acetic acid acts in vitro on human mononuclear cells as a co-stimulator with other inducers of tumour necrosis factor. Eur J Cancer 37:1930–1937PubMedCrossRefGoogle Scholar
  145. Pilat MJ, Lorusso PM (2006) Vascular disrupting agents. J Cell Biochem 99:1021–1039PubMedCrossRefGoogle Scholar
  146. Pinto MM, Sousa ME, Nascimento MS (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538PubMedCrossRefGoogle Scholar
  147. Pober JS (1987) Effects of tumour necrosis factor and related cytokines on vascular endothelial cells. Ciba Found Symp 131:170–184PubMedGoogle Scholar
  148. Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54:1479–1484PubMedCrossRefGoogle Scholar
  149. Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE (1998) Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 58:4646–4653PubMedGoogle Scholar
  150. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140PubMedGoogle Scholar
  151. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005a) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11:1551–1562PubMedCrossRefGoogle Scholar
  152. Ran S, Mohamedali KA, Luster TA, Thorpe PE, Rosenblum MG (2005b) The vascular-ablative agent VEGF(121)/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia 7:486–496PubMedCrossRefGoogle Scholar
  153. Rehman F, Rustin G (2008) ASA404: update on drug development. Expert Opin Investig Drugs 17:1547–1551PubMedCrossRefGoogle Scholar
  154. Rhee J, Hoff PM (2005) Angiogenesis inhibitors in the treatment of cancer. Expert Opin Pharmacother 6:1701–1711PubMedCrossRefGoogle Scholar
  155. Ribatti D (2009) The discovery of antiangiogenic molecules: a historical review. Curr Pharm Des 15:345–352PubMedCrossRefGoogle Scholar
  156. Ruegg C, Mutter N (2007) Anti-angiogenic therapies in cancer: achievements and open questions. Bull Cancer 94:753–762PubMedGoogle Scholar
  157. Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, Gumbrell L, Price PM (2003) Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 21:2815–2822PubMedCrossRefGoogle Scholar
  158. Seed L, Slaughter DP, Limarzi LR (1940) Effect of colchicine on human carcinoma. Surgery 7:696–709Google Scholar
  159. Seshadri M, Spernyak JA, Maiery PG, Cheney RT, Mazurchuk R, Bellnier DA (2007) Visualizing the acute effects of vascular-targeted therapy in vivo using intravital microscopy and magnetic resonance imaging: correlation with endothelial apoptosis, cytokine induction, and treatment outcome. Neoplasia 9:128–135PubMedCrossRefGoogle Scholar
  160. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787PubMedCrossRefGoogle Scholar
  161. Shear MJ (1944) Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J Natl Cancer Inst 4:461–476Google Scholar
  162. Shear MJ, Turner FC, Perrault A (1943) Chemical treatment of tumors. Isolation of haemorrhage-producing fractions fromSerratia marcescens (Bacillus prodrigiosus) culture filtrate (Bacillus prodrigiosus) culture filtrate J Natl Cancer Inst 4:81–97Google Scholar
  163. Shi W, Siemann DW (2005) Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo 19:1045–1050PubMedGoogle Scholar
  164. Siemann DW, Chaplin DJ (2007) An update on the clinical development of drugs to disable tumor vasculature. Expert Opin Drug Discov 2:1–11CrossRefGoogle Scholar
  165. Siemann DW, Horsman MR (2004) Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 4:321–327PubMedCrossRefGoogle Scholar
  166. Siemann DW, Horsman MR (2009) Vascular targeted therapies in oncology. Cell Tissue Res 335:241–248PubMedCrossRefGoogle Scholar
  167. Siemann DW, Shi W (2004) Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys 60:1233–1240PubMedCrossRefGoogle Scholar
  168. Siemann DW, Shi W (2008) Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res 28:2027–2031PubMedGoogle Scholar
  169. Siemann DW, Chaplin DJ, Horsman MR (2004) Vascular-targeting therapies for treatment of malignant disease. Cancer 100:2491–2499PubMedCrossRefGoogle Scholar
  170. Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18:189–197PubMedCrossRefGoogle Scholar
  171. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427PubMedCrossRefGoogle Scholar
  172. Thorpe PE, Ran S (2002) Mapping zip codes in human vasculature. Pharmacogenomics J 2:205–206PubMedCrossRefGoogle Scholar
  173. Thorpe PE, Chaplin DJ, Blakey DC (2003) The first international conference on vascular targeting: meeting overview. Cancer Res 63:1144–1147PubMedGoogle Scholar
  174. van Heeckeren WJ, Bhakta S, Ortiz J, Duerk J, Cooney MM, Dowlati A, McCrae K, Remick SC (2006) Promise of new vascular-disrupting agents balanced with cardiac toxicity: is it time for oncologists to get to know their cardiologists? J Clin Oncol 24:1485–1488PubMedCrossRefGoogle Scholar
  175. Veenendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG (2002) In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci U S A 99:7866–7871PubMedCrossRefGoogle Scholar
  176. Vestweber D, Winderlich M, Cagna G, Nottebaum AF (2009) Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 19:8–15PubMedCrossRefGoogle Scholar
  177. Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S (2005) Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 115:2992–3006PubMedCrossRefGoogle Scholar
  178. Wakelee HA, Schiller JH (2005) Targeting angiogenesis with vascular endothelial growth factor receptor small-molecule inhibitors: novel agents with potential in lung cancer. Clin Lung Cancer 7 Suppl 1:S31–S38PubMedCrossRefGoogle Scholar
  179. Walshe WW (1844) The Anatomy, Physiology, Pathology and Treatment of Cancer, William D. Ticknor & Co: Boston.Google Scholar
  180. West CM, Price P (2004) Combretastatin A4 phosphate. Anticancer Drugs 15:179–187PubMedCrossRefGoogle Scholar
  181. White SJ, Nicklin SA, Buning H, Brosnan MJ, Leike K, Papadakis ED, Hallek M, Baker AH (2004) Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519PubMedCrossRefGoogle Scholar
  182. White K, Buning H, Kritz A, Janicki H, McVey J, Perabo L, Murphy G, Odenthal M, Work LM, Hallek M, Nicklin SA, Baker AH (2008) Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Ther 15:443–451PubMedCrossRefGoogle Scholar
  183. Woglom WH (1923) A critique of tumour resistance. J Cancer Res 7:283–311Google Scholar
  184. Wolmark N, Yothers G, O’Connell MJ, Sharif S, Atkins JN, Seay TE, Feherenbacher L, O’Reilly S, Allegra CJ (2009) A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: results of NSABP Protocol C-08. J Clin Oncol 27:15s. (abstr LBA4)CrossRefGoogle Scholar
  185. Wood FC (1926) Use of colloidal lead in the treatment of cancer. J Am Med Assoc 87:717–722CrossRefGoogle Scholar
  186. Work LM, Ritchie N, Nicklin SA, Reynolds PN, Baker AH (2004) Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control. Gene Ther 11:1296–1300PubMedCrossRefGoogle Scholar
  187. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N, Leike K, Odenthal M, Drebber U, Hallek M, Baker AH (2006) Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 13:683–693PubMedCrossRefGoogle Scholar
  188. Xu D, Fang L, Zhu Q, Hu Y, He Q, Yang B (2008) Antimultidrug-resistant effect and mechanism of a novel CA-4 analogue MZ3 on leukemia cells. Pharmazie 63:528–533PubMedGoogle Scholar
  189. Zhang B (2008) Targeting the stroma by T cells to limit tumor growth. Cancer Res 68:9570–9573PubMedCrossRefGoogle Scholar
  190. Zhou S, Kestell P, Baguley BC, Paxton JW (2002) 5,6-dimethylxanthenone-acetic acid (DMXAA): a new biological response modifier for cancer therapy. Invest New Drugs 20:281–295PubMedCrossRefGoogle Scholar
  191. Zweifel M, Jayson G, Reed N, Osborne R, Hassan B, Shreeves G, Poupard L, Walicke PA, Balkissoon J, Chaplin D, Rustin G (2009) Combretastatin A-4 phosphate (CA4P) carboplatin and paclitaxel in patients with platinum-resistant ovarian cancer: final phase II trial results. J Clin Oncol 27:15s. (suppl; abstr 5502)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of ArizonaTucsonUSA

Personalised recommendations