Statistical Nano CMOS Variability and Its Impact on SRAM

  • Asen Asenov
Part of the Integrated Circuits and Systems book series (ICIR)


The years of “happy scaling” are over and the fundamental challenges that the semiconductor industry faces at technology and device level will deeply affect the design of the next generations of integrated circuits and systems. The progressive scaling of CMOS transistors to achieve faster devices and higher circuit density has fueled the phenomenal success of the semiconductor industry – captured by Moore’s famous law [1]. Silicon technology has entered the nano CMOS era with 35-nm MOSFETs in mass production in the 45-nm technology generation. However, it is widely recognised that the increasing variability in the device characteristics is among the major challenges to scaling and integration for the present and next generation of nano CMOS transistors and circuits. Variability of transistor characteristics has become a major concern associated with CMOS transistors scaling and integration [2, 3]. It already critically affects SRAM scaling [4], and introduces leakage and timing issues in digital logic circuits [5]. The variability is the main factor restricting the scaling of the supply voltage, which for the last four technology generations has remained virtually constant, adding to the looming power crisis.


Threshold Voltage Statistical Variability SRAM Cell Equivalent Oxide Thickness CMOS Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moore GE (1975) Progress in digital electronics, technical digest of the Int’l Electron Devices Meeting, IEEE Press, 13Google Scholar
  2. 2.
    Bernstein K, Frank DJ, Gattiker AE, Haensch W, Ji BL, Nassif SR, Nowak EJ, Pearson DJ, Rohrer NJ (2006) IBM J Res Dev 50:433CrossRefGoogle Scholar
  3. 3.
    Brown AR, Roy G, Asenov A (2007) Poly-Si gate related variability in decananometre MOSFETs with conventional architecture. IEEE Trans Electron Devices 54:3056CrossRefGoogle Scholar
  4. 4.
    Cheng B-J, Roy S, Asenov A (2004) The impact of random dopant effects on SRAM cells. Proc. 30th European Solid-State Circuits Conference (ESSCIRC), Leuven, 219Google Scholar
  5. 5.
    Agarwal A, Chopra K, Zolotov V, Blaauw D (2005) Circuit optimization using statistical static timing analysis. Proc. 42nd Design Automation Conference, Anaheim, 321Google Scholar
  6. 6.
    Kahng AB, Pati YC (1999) Subwavelength optical lithography: challenges and impact on physical design. Proceedings of the 1999 international symposium on Physical design, 112Google Scholar
  7. 7.
    Wang X, Cheng B, Roy S, Asenov A (2008) Simulation of strain induced variability in nMOSFETs. Proceedings of the 9th international conference on ultimate integration on silicon, 15–16 March, Udine, Italy, p 89Google Scholar
  8. 8.
  9. 9.
    Asenov A (1998) Random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs: a 3D ‘atomistic’ simulation study. IEEE Trans Electron Devices 45:2505CrossRefGoogle Scholar
  10. 10.
    Asenov A, Kaya S, Brown AR (2003) Intrinsic parameter fluctuations in decananometre MOSFETs introduced by Gate Line Edge Roughness. IEEE Trans Electron Devices 50:1254CrossRefGoogle Scholar
  11. 11.
    Watling JR, Brown AR, Ferrari G, Babiker JR, Bersuker G, Zeitzoff P, Zeitzoff P, Asenov A (2008) Impact of high-k on transport and variability in nano-CMOS devices. J Comput Theor Nanosci 5(6):1072Google Scholar
  12. 12.
    Asenov A, Kaya S, Davies JH (2002) Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations. IEEE Trans Electron Devices 49:112CrossRefGoogle Scholar
  13. 13.
    Brown AR, Watling JR, Asenov A (2002) A 3-D atomistic study of archetypal double gate MOSFET structures. J Comput Electron 1:165CrossRefGoogle Scholar
  14. 14.
    Rauch SE III (2007) Review and reexamination of reliability effects related to NBTI-induced statistical variations. IEEE Trans Device Mater Rel 7:524CrossRefGoogle Scholar
  15. 15.
    Reddy V et al (2002) Impact of negative bias temperature instability on digital circuit reliability. Proc IEEE IRPS, 248–254Google Scholar
  16. 16.
    Compagnoni CM, Spinelli AS, Beltrami S, Bonanomi M, Visconti A (2008) IEEE Electron Dev Lett 29:941CrossRefGoogle Scholar
  17. 17.
    Fischer T, Amirante E, Hofmann K, Ostermayr M, Huber P, Schmitt-Landsiedel D (2008) Proc ESSDERC’08, 51Google Scholar
  18. 18.
    Markov S, Brown AR, Cheng B, Roy G, Roy S, Asenov A (2007) Three-dimensional statistical simulation of gate leakage fluctuations due to combined interface roughness and random dopants. Jpn J Appl Phys 46(4B):2112CrossRefGoogle Scholar
  19. 19.
    Rodríguez R, Stathis JH, Linder BP, Kowalczyk S, Chuang CT, Joshi RV, Northrop G, Bernstein K, Bhavnagarwala AJ, Lombardo S (2002) The impact of gate-oxide breakdown on SRAM stability. IEEE Electron Device Lett 23:559CrossRefGoogle Scholar
  20. 20.
    Roy G, Brown AR, Adamu-Lema F, Roy S, Asenov A (2006) Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs. IEEE Trans Electron Devices 52:3063–3070CrossRefGoogle Scholar
  21. 21.
    Taiault J, Foucher J, Tortai JH, Jubert O, Landis S, Pauliac S (2005) Line edge roughness characterization with three-dimensional atomic force microscope: transfer during gate patterning process. J Vac Sci Technol B 23:3070Google Scholar
  22. 22.
    Uma S, McConnell AD, Asheghi M, Kurabayashi K, Goodson KE (2001) Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int J Thermophys 22:605CrossRefGoogle Scholar
  23. 23.
    Cathignol A, Cheng B, Chanemougame D, Brown AR, Rochereau K, Ghibaudo G, Asenov A (2008) Quantitative evaluation of statistical variability sources in a 45 nm technological node LP N-MOSFET. IEEE Electron Device Lett 29:609CrossRefGoogle Scholar
  24. 24.
    Asenov A, Cathignol A, Cheng B, McKenna KP, Brown AR, Shluger AL, Chanemougame D, Rochereau K, Ghibaudo G (2008) Origin of the asymmetry in the magnitude of the statistical variability of n- and p-channel poly-Si gate bulk MOSFETs. IEEE Electron Device Lett 29:913–915CrossRefGoogle Scholar
  25. 25.
    Bukhori MF, Roy S, Asenova A (2008) Statistical aspects of reliability in bulk MOSFETs with multiple defect states and random discrete dopants. Microelectron Reliab 48(8–9):1549–1552Google Scholar
  26. 26.
    Huard V, Parthasarathy C, Guerin C, Valentin T, Pion E, Mammasse M, Planes N, Camus L (2008) NBTI degradation: from transistors to SRAM arrays, IEEE CFP08RPS-CDR 46th annual international reliability physics symposium, p 289Google Scholar
  27. 27.
    Inaba S, Okano K, Matsuda S, Fujiwara M, Hokazono A, Adachi K, Ohuchi K, Suto H, Fukui H, Shimizu T, Mori S, Oguma H, Murakoshi A, Itani T, Iinuma T, Kudo T, Shibata H, Taniguchi S, Takayanagi M, Azuma A, Oyamatsu H, Suguro K, Katsumata Y, Toyoshima Y, Ishiuchi H (2002) High performance 35 nm gate length CMOS with NO oxynitride gate dielectric and Ni salicide. IEEE Trans Electron Devices 49:2263CrossRefGoogle Scholar
  28. 28.
    International Roadmap for Semiconductors (ITRS), Semiconductor Industry Association. Available:
  29. 29.
    Asenov A, Saini S (1999) Supression of random dopant induced threshold voltage fluctuations in sub-0.1 μm MOSFETs with epitaxial and delta doped channels. IEEE Trans Electron Devices 46(8):1718–1724CrossRefGoogle Scholar
  30. 30.
    Cheng B, Roy S, Brown AR, Millar C, Asenov A (2009) Evaluation of statistical variability in 32 and 22 nm technology generation LSTP MOSFETs. Solid State Electron 53(7):767–772CrossRefGoogle Scholar
  31. 31.
    Kuhn KJ (2007) Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS. IEDM Tech Dig, 471Google Scholar
  32. 32.
    Denais M, Huard V, Parthasarathy C, Ribes G, Perrier F, Revil N, Bravaix A (2004) Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide. IEEE Trans Device Mater Rel 4:715CrossRefGoogle Scholar
  33. 33.
    Dadgour H, De V, Banerjee K (2008) Statistical modeling of metal-gate work-function variability in emerging device technologies and implications for circuit design. Proc. 2008 IEEE/ACM International Conference on Computer-Aided Design, p 270Google Scholar
  34. 34.
    Lin C-H, Dunga MV, Lu D, Niknejad AM, Hu C (2008) Statistical compact modeling of variations in nano MOSFETs VLSI-TSA 2008, p 165Google Scholar
  35. 35.
    Power JA, Donellan B, Mathewson A, Lane WA (1994) Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design. IEEE Trans Semicond Manufact 7:306CrossRefGoogle Scholar
  36. 36.
    McAndrew CC (2004) Efficient statistical modeling for circuit simulation. In: Reis R, Jess J (eds) Design of systems on a chip: devices and components, Kluwer Academic, p 97Google Scholar
  37. 37.
    Takeuchi K, Hane M (2008) Statistical compact model parameter extraction by direct fitting to variations. IEEE Trans Electron Devices 55:1487CrossRefGoogle Scholar
  38. 38.
    BSIM4 manual. Available:
  39. 39.
    Cheng B, Roy S, Roy G, Adamu-Lema F, Asenov A (2005) Impact of intrinsic parameter fluctuations in decanano MOSFETs on yield and functionality of SRAM cells. Solid State Electron 49:740CrossRefGoogle Scholar
  40. 40.
    Cheng B, Roy S, Asenov A (2006) Low power, high density CMOS 6-T SRAM cell design subject to ‘atomistic’ fluctuations. Proc ULIS 2006, ISBN:88-900874-0-8, pp 33–36, GrenobleGoogle Scholar
  41. 41.
    Cheng B, Roy S, Asenov A (2007) CMOS 6-T SRAM cell design subject to ‘atomistic’ fluctuations. Solid State Electron 51:565CrossRefGoogle Scholar
  42. 42.
    Stolk PA, Tuinhout HP, Duffy R, Augendre E, Bellefroid LP, Bolt MJB, Croon J et al (2001) CMOS device optimization for mixed-signal technologies. Tech Dig IEDM, 215–218Google Scholar
  43. 43.
    Takeda K, Hagihara Y, Aimoto Y et al (2005) A read-static-noise-margin-free SRAM cell for low-VDD and high-speed CMOS SRAM cells. Tech Dig IEDM, 659–662Google Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringThe University of GlasgowGlasgowUK

Personalised recommendations