Attenuated Familial Adenomatous Polyposis: Diagnosis, Management, and Future Prognosis

Chapter
Part of the M.D. Anderson Solid Tumor Oncology Series book series (MDA, volume 5)

Abstract

Attenuated familial adenomatous polyposis is a variant of familial ­adenomatous polyposis (FAP) in which patients present with 99 or fewer cumulative polyps in the colon and/or rectum, with a tendency toward more proximal colonic polyps [1, 2]. The average age of adenoma development and of colon ­cancer occurrence is clearly older than in typical FAP. However, there is a wide variation in the age of onset of these lesions and a wide variation in the numbers of adenomas in individuals within attenuated FAP families, with some individuals presenting with more than 100 lifetime polyps. Therefore, it is difficult and often impossible to distinguish attenuated FAP from typical FAP in single individuals. The most suggestive cases initially are patients over the age of 50 who exhibit 50–100 adenomas. Younger patients with fewer adenomas and older patients with greater than 100 adenomas are difficult to categorize. This means that examination of multiple family members is often needed to distinguish FAP and attenuated FAP in a family. Genetic testing is now also helpful in this regard, as mutations giving rise to attenuated FAP preferentially occur in localized regions of the APC gene.

Keywords

Attenuated FAP Familial polyposis Polyposis Colon cancer 

Notes

Acknowledgments

This work was supported by grants from the National Cancer Institute: R01-CA40641 and PO1-CA073992. Additional support was provided by a Cancer Center Support Grant P30-CA42014 and the Huntsman Cancer Foundation.

References

  1. 1.
    Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127(2):444–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Soravia C, Berk T, Madlensky L, Mitri A, Cheng H, Gallinger S, et al. Genotype–phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet. 1998;62(6):1290–301.PubMedCrossRefGoogle Scholar
  3. 3.
    Leppert M, Burt R, Hughes JP, Samowitz W, Nakamura Y, Woodward S, et al. Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. N Engl J Med. 1990;322(13):904–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Sieber OM, Segditsas S, Knudsen AL, Zhang J, Luz J, Rowan AJ, et al. Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly but depend on the site of the germline mutation. Gut. 2006;55(10):1440–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Spirio L, Otterud B, Stauffer D, Lynch H, Lynch P, Watson P, et al. Linkage of a variant or attenuated form of adenomatous polyposis coli to the adenomatous polyposis coli (APC) locus. Am J Hum Genet. 1992;51(1):92–100.PubMedGoogle Scholar
  6. 6.
    Hernegger GS, Moore HG, Guillem JG. Attenuated familial adenomatous polyposis: an evolving and poorly understood entity. Dis Colon Rectum. 2002;45(1):127–34. discussion 134–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Nielsen M, Hes F, Nagengast F, Weiss M, Mathus-Vliegen E, Morreau H, et al. Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin Genet. 2007;71(5):427–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Attard TM, Cuffari C, Tajouri T, Stoner JA, Eisenberg MT, Yardley JH, et al. Multicenter experience with upper gastrointestinal polyps in pediatric patients with familial adenomatous polyposis. Am J Gastroenterol. 2004;99(4):681–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Attard TM, Giglio P, Koppula S, Snyder C, Lynch HT. Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 2007;109(4):761–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Soravia C, Sugg SL, Berk T, Mitri A, Cheng H, Gallinger S, et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study. Am J Pathol. 1999;154(1):127–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen CS, Phillips KD, Grist S, Bennet G, Craig JE, Muecke JS, et al. Congenital hypertrophy of the retinal pigment epithelium (CHRPE) in familial colorectal cancer. Fam Cancer. 2006;5(4):397–404.PubMedCrossRefGoogle Scholar
  12. 12.
    Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101(2):385–98.PubMedCrossRefGoogle Scholar
  13. 13.
    Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61(2):153–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Renkonen ET, Nieminen P, Abdel-Rahman WM, Moisio AL, Jarvela I, Arte S, et al. Adenomatous polyposis families that screen APC mutation-negative by conventional methods are genetically heterogeneous. J Clin Oncol. 2005;23(24):5651–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Thirlwell C, Howarth KM, Segditsas S, Guerra G, Thomas HJ, Phillips RK, et al. Investigation of pathogenic mechanisms in multiple colorectal adenoma patients without germline APC or MYH/MUTYH mutations. Br J Cancer. 2007;96(11):1729–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Aretz S, Stienen D, Friedrichs N, Stemmler S, Uhlhaas S, Rahner N, et al. Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP). Hum Mutat. 2007;28(10):985–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, et al. Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut. 2008;57(1):71–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Nieuwenhuis MH, Mathus-Vliegen LM, Slors FJ, Griffioen G, Nagengast FM, Schouten WR, et al. Genotype–phenotype correlations as a guide in the management of familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2007;5(3):374–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Giardiello FM, Spannhake EW, DuBois RN, Hylind LM, Robinson CR, Hubbard WC, et al. Prostaglandin levels in human colorectal mucosa: effects of sulindac in patients with familial adenomatous polyposis. Dig Dis Sci. 1998;43(2):311–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Turini ME, DuBois RN. Primary prevention: phytoprevention and chemoprevention of colorectal cancer. Hematol Oncol Clin North Am. 2002;16(4):811–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Cao X, Hong Y, Eu KW, Loi C, Cheah PY. Singapore familial adenomatous polyposis (FAP) patients with classical adenomatous polyposis but undetectable APC mutations have accelerated cancer progression. Am J Gastroenterol. 2006;101(12):2810–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Venesio T, Balsamo A, Sfiligoi C, Fuso L, Molatore S, Ranzani GN, et al. Constitutional high expression of an APC mRNA isoform in a subset of attenuated familial adenomatous polyposis patients. J Mol Med. 2007;85(3):301–8.CrossRefGoogle Scholar
  23. 23.
    Aretz S, Uhlhaas S, Sun Y, Pagenstecher C, Mangold E, Caspari R, et al. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene. Hum Mutat. 2004;24(5):370–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Gurvich O, Tuohy T, Howard MT, Finkel R, Medne L, Anderson CB, et al. DMD pseudoexon mutations: splicing efficiency, phenotype, and prospects for pseudoexon-skipping therapy. Ann Neurol. 2008;63(1):81–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharp A, Pichert G, Lucassen A, Eccles D. RNA analysis reveals splicing mutations and loss of expression defects in MLH1 and BRCA1. Hum Mutat. 2004;24(3):272.PubMedCrossRefGoogle Scholar
  26. 26.
    Gismondi V, Stagnaro P, Pedemonte S, Biticchi R, Presciuttini S, Grammatico P, et al. Chain-terminating mutations in the APC gene lead to alterations in APC RNA and protein concentration. Genes Chromosom Cancer. 1998;22(4):278–86.PubMedCrossRefGoogle Scholar
  27. 27.
    van der Luijt RB, Meera Khan P, Vasen HF, Breukel C, Tops CM, Scott RJ, et al. Germline mutations in the 3′ part of APC exon 15 do not result in truncated proteins and are associated with attenuated adenomatous polyposis coli. Hum Genet. 1996;98(6):727–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Castellsagué E, González S, Guinó E, Stevens KN, Borràs E, Raymond VM, et al. Allele-specific expression of APC in adenomatous polyposis families. Gastroenterology. 2010;139:439–47.Google Scholar
  29. 29.
    Heinimann K, Thompson A, Locher A, Furlanetto T, Bader E, Wolf A, et al. Nontruncating APC germ-line mutations and mismatch repair deficiency play a minor role in APC mutation-negative polyposis. Cancer Res. 2001;61(20):7616–22.PubMedGoogle Scholar
  30. 30.
    Aretz S, Uhlhaas S, Goergens H, Siberg K, Vogel M, Pagenstecher C, et al. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer. 2006;119(4):807–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim JC, Ka IH, Lee YM, Koo KH, Kim HC, Yu CS, et al. MYH, OGG1, MTH1, and APC alterations involved in the colorectal tumorigenesis of Korean patients with multiple adenomas. Virchows Arch. 2007;450(3):311–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Plawski A, Nowakowska D, Podralska M, Lipinski D, Steffen J, Slomski R. The AAPC case, with an early onset of colorectal cancer. Int J Colorectal Dis. 2007;22(4):449–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Stekrova J, Sulova M, Kebrdlova V, Zidkova K, Kotlas J, Ilencikova D, et al. Novel APC mutations in Czech and Slovak FAP families: clinical and genetic aspects. BMC Med Genet. 2007;8:16.PubMedCrossRefGoogle Scholar
  34. 34.
    Miyoshi Y, Ando H, Nagase H, Nishisho I, Horii A, Miki Y, et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci U S A. 1992;89(10):4452–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith-Ravin J, Pack K, Hodgson S, Tay SK, Phillips R, Bodmer W. APC mutation associated with late onset of familial adenomatous polyposis. J Med Genet. 1994;31(11):888–90.PubMedCrossRefGoogle Scholar
  36. 36.
    van der Luijt RB, Vasen HF, Tops CM, Breukel C, Fodde R, Meera Khan P. APC mutation in the alternatively spliced region of exon 9 associated with late onset familial adenomatous polyposis. Hum Genet. 1995;96(6):705–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes & development. 1999 May 15;13(10):1309–21..PubMedCrossRefGoogle Scholar
  38. 38.
    Varesco L, Gismondi V, Presciuttini S, Groden J, Spirio L, Sala P, et al. Mutation in a splice-donor site of the APC gene in a family with polyposis and late age of colonic cancer death. Hum Genet. 1994;93(3):281–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Venesio T, Balsamo A, Rondo-Spaudo M, Varesco L, Risio M, Ranzani GN. APC haploinsufficiency, but not CTNNB1 or CDH1 gene mutations, accounts for a fraction of familial adenomatous polyposis patients without APC truncating mutations. Lab Invest. 2003;83(12):1859–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen R, Axell L, Klein C. Attenuated familial adenomatosis polyposis. J Clin Oncol. 2007;25(6):724–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Pilarski RT, Brothman AR, Benn P, Shulman Rosengren S. Attenuated familial adenomatous polyposis in a man with an interstitial deletion of chromosome arm 5q. Am J Med Genet. 1999;86(4):321–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Crabtree MD, Fletcher C, Churchman M, Hodgson SV, Neale K, Phillips RK, et al. Analysis of candidate modifier loci for the severity of colonic familial adenomatous polyposis, with evidence for the importance of the N-acetyl transferases. Gut. 2004;53(2):271–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Su LK, Kohlmann W, Ward PA, Lynch PM. Different familial adenomatous polyposis phenotypes resulting from deletions of the entire APC exon 15. Hum Genet. 2002;111(1):88–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Bala S, Sulekova Z, Ballhausen WG. Constitutive APC exon 14 skipping in early-onset familial adenomatous polyposis reveals a dramatic quantitative distortion of APC gene-specific isoforms. Hum Mutat. 1997;10(3):201–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Michils G, Tejpar S, Fryns JP, Legius E, Van Cutsem E, Cassiman JJ, et al. Pathogenic mutations and rare variants of the APC gene identified in 75 Belgian patients with familial adenomatous polyposis by fluorescent enzymatic mutation detection (EMD). Eur J Hum Genet. 2002;10(9):505–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Wallis YL, Morton DG, McKeown CM, Macdonald F. Molecular analysis of the APC gene in 205 families: extended genotype–phenotype correlations in FAP and evidence for the role of APC amino acid changes in colorectal cancer predisposition. J Med Genet. 1999;36(1):14–20.PubMedGoogle Scholar
  47. 47.
    Nalla VK, Rogan PK. Automated splicing mutation analysis by information theory. Hum Mutat. 2005;25(4):334–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Rogan PK, Faux BM, Schneider TD. Information analysis of human splice site mutations. Hum Mutat. 1998;12(3):153–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15(16):2490–508.PubMedCrossRefGoogle Scholar
  51. 51.
    Mohamed Z, Ahmad R, Yoke NS, Zakaria Z, Ahmad H, Yew TH. A nonsense mutation in exon 8 of the APC gene (Arg283Ter) causes clinically variable FAP in a Malaysian Chinese family. Cancer Sci. 2003;94(8):725–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Curia MC, Esposito DL, Aceto G, Palmirotta R, Crognale S, Valanzano R, et al. Transcript dosage effect in familial adenomatous polyposis: model offered by two kindreds with exon 9 APC gene mutations. Hum Mutat. 1998;11(3):197–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet. 2002;11(13):1549–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 2006;25(57):7531–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G, et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993;75(5):951–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Erdman SH, Ignatenko NA, Powell MB, Blohm-Mangone KA, Holubec H, Guillen-Rodriguez JM, et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis. 1999;20(9):1709–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Martinez ME, O’Brien TG, Fultz KE, Babbar N, Yerushalmi H, Qu N, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci U S A. 2003;100(13):7859–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Bigler J, Whitton J, Lampe JW, Fosdick L, Bostick RM, Potter JD. CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res. 2001;61(9):3566–9.PubMedGoogle Scholar
  59. 59.
    Hubner RA, Muir KR, Liu JF, Logan RF, Grainge M, Armitage N, et al. Genetic variants of UGT1A6 influence risk of colorectal adenoma recurrence. Clin Cancer Res. 2006;12(21):6585–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Samowitz WS, Wolff RK, Curtin K, Sweeney C, Ma KN, Andersen K, et al. Interactions between CYP2C9 and UGT1A6 polymorphisms and nonsteroidal anti-inflammatory drugs in colorectal cancer prevention. Clin Gastroenterol Hepatol. 2006;4(7):894–901.PubMedCrossRefGoogle Scholar
  61. 61.
    Baran AA, Silverman KA, Zeskand J, Koratkar R, Palmer A, McCullen K, et al. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression. Genome Res. 2007;17(5):566–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell. 1993;75(4):631–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Kwong LN, Shedlovsky A, Biehl BS, Clipson L, Pasch CA, Dove WF. Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 18. Genetics. 2007;176(2):1237–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Silverman KA, Koratkar R, Siracusa LD, Buchberg AM. Identification of the modifier of Min 2 (Mom2) locus, a new mutation that influences Apc-induced intestinal neoplasia. Genome Res. 2002;12(1):88–97.PubMedCrossRefGoogle Scholar
  65. 65.
    MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell. 1995;81(6):957–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Spirio LN, Kutchera W, Winstead MV, Pearson B, Kaplan C, Robertson M, et al. Three secretory phospholipase A(2) genes that map to human chromosome 1P35-36 are not mutated in individuals with attenuated adenomatous polyposis coli. Cancer Res. 1996;56(5):955–8.PubMedGoogle Scholar
  67. 67.
    Tischfield JA, Xia YR, Shih DM, Klisak I, Chen J, Engle SJ, et al. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics. 1996;32(3):328–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Haines J, Johnson V, Pack K, Suraweera N, Slijepcevic P, Cabuy E, et al. Genetic basis of variation in adenoma multiplicity in ApcMin/+ Mom1S mice. Proc Natl Acad Sci U S A. 2005;102(8):2868–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Suraweera N, Haines J, McCart A, Rogers P, Latchford A, Coster M, et al. Genetic ­determinants modulate susceptibility to pregnancy-associated tumourigenesis in a recombinant line of Min mice. Hum Mol Genet. 2006;15(23):3429–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Fijneman RJ. Genetic predisposition to sporadic cancer: how to handle major effects of minor genes? Cell Oncol. 2005;27(5–6):281–92.PubMedGoogle Scholar
  71. 71.
    Nasioulas S, Jones IT, St John DJ, Scott RJ, Forrest SM, McKinlay Gardner RJ. Profuse familial adenomatous polyposis with an adenomatous polyposis coli exon 3 mutation. Fam Cancer. 2001;1(1):3–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Heppner Goss K, Trzepacz C, Tuohy TM, Groden J. Attenuated APC alleles produce functional protein from internal translation initiation. Proc Natl Acad Sci U S A. 2002;99(12):8161–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Samowitz WS, Thliveris A, Spirio LN, White R. Alternatively spliced adenomatous polyposis coli (APC) gene transcripts that delete exons mutated in attenuated APC. Cancer Res. 1995;55(17):3732–4.PubMedGoogle Scholar
  74. 74.
    Enomoto M, Konishi M, Iwama T, Utsunomiya J, Sugihara KI, Miyaki M. The relationship between frequencies of extracolonic manifestations and the position of APC germline mutation in patients with familial adenomatous polyposis. Jpn J Clin Oncol. 2000;30(2):82–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Scarano MI, De Rosa M, Panariello L, Carlomagno N, Riegler G, Rossi GB, et al. Familial adenomatous polyposis coli: five novel mutations in exon 15 of the adenomatous polyposis coli (APC) gene in Italian patients. Mutations in brief no. 225. Online. Hum Mutat. 1999;13(3):256–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Milani L, Gupta M, Andersen M, Dhar S, Fryknas M, Isaksson A, et al. Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res. 2007;35(5):e34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations