Advertisement

Low-Power ADCs for Bio-Medical Applications

  • J. Craninckx
  • G. Van der Plas
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

In this chapter, recent innovations reducing power consumption in A/D converters will be discussed. Indeed, in many applications the function performing a conversion from the analog continuous-time domain to the discrete-time digital domain takes a large proportion of the power consumption. Especially for biomedical systems an aggressive reduction in power consumption of all blocks including A/D converters opens up a window for higher performance and more versatile solutions.

Keywords

Power Consumption Input Signal Input Capacitance Conversion Step Capacitor Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van de Plassche R (2003) CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd edn. Kluwer, DordrechtMATHGoogle Scholar
  2. 2.
    Walden RH (1999) Analog-to-digital converter survey and analysis. J Select Areas Commun 17(4):539–550, April 1999CrossRefGoogle Scholar
  3. 3.
    Craninckx J, Van der Plas G (2007) A 65 fJ/Conversion-Step 0-to-50 Ms/s 0-to-0.7 mW 9b Charge sharing SAR ADC in 90 nm Digital CMOS. ISSCC Dig Tech Papers, pp. 246–247, Feb 2007Google Scholar
  4. 4.
    van Elzakker M, van Tuijl E,.Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9 μW 4.4fj/conversion-step 10b 1 ms/s charge-redistribution ADC. In: Proceedings of Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, p 244–610, 3–7 Feb 2008Google Scholar
  5. 5.
    Van der Plas G, Verbruggen B (2008) A 150 MS/s 133 μW 7 bit ADC in 90 nm digital CMOS. IEEE J Solid-State Circuits, 43(12):2631–2640, Dec 2008CrossRefGoogle Scholar
  6. 6.
    Agnes A, Bonizzoni E, Malcovati P, Maloberti F (2008) A 9.4-ENOB 1 V 3.8 μW 100 kS/s SAR ADC with time-domain comparator. In: Proceedings of Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, pages 246–610, 3–7 Feb 2008Google Scholar
  7. 7.
    Boulemnakher M, Andre E, Roux J, Paillardet F (2008) A 1.2 V 4.5 mW 10b 100 MS/s pipeline ADC in a 65 nm CMOS. In: Proceedings Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, pages 250–611, 3–7 Feb 2008Google Scholar
  8. 8.
    Giannini V, Nuzzo P, Chironi V, Baschirotto A, Van der Plas G, Craninckx J (2008) A 820 μW 9b 40 MS/s Noise Tolerant Dynamic SAR ADC in 90 nm Digital CMOS. ISSCC Digest. of Technical Papers, pp. 238-239, Feb 2008Google Scholar
  9. 9.
    Abo M, Gray P (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J Solid State Circuits 34(5):599-606, May 1999CrossRefGoogle Scholar
  10. 10.
    Van der Plas G, Decoutere S, Donnay S (2006) A 0.16 pF/conversion-step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digital CMOS process. ISSCC Digest of Technical Papers, pp. 566–567, Feb 2006Google Scholar
  11. 11.
    Van den Bosch A (2004) Static and dynamic performance limitations for high speed D/A converters. ISBN 9781402077616, SpringerGoogle Scholar
  12. 12.
    Scholtens P, Vertregt M (2002) A 6-b 1.6-Gsamples Flash ADC in 0.18 μm CMOS using averaging termination. IEEE JSSC 37(12):1599–1609, Dec 2002Google Scholar
  13. 13.
    Lin J, Haroun B (2002) An embedded 0.8 V/480 μW 6B/22 MHz flash ADC in 0.13-μm Digital CMOS process using a nonlinear double interpolation technique. IEEE JSSC 37(12)1610–1617, Dec 2002Google Scholar
  14. 14.
    Draxelmayr D (2004) A 6b 600 MHz 10 mW ADC Array in Digital 90 nm CMOS. IEEE digest of ISSCC 2004, paper 14.7Google Scholar
  15. 15.
    Ginsburg BP, Chandrakasan AP (2008) Highly Interleaved 5b 250 MS/s ADC with redundant channels in 65 nm CMOS. ISSCC Digest of Technical Papers, pp. 240–241, Feb. 2008Google Scholar
  16. 16.
    Chen S, Brodersen R (2006) A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits 41(12)2669–2680, Dec 2006CrossRefGoogle Scholar
  17. 17.
    Brooks L, Lee H-S (2007) A zero-crossing-based 8-bit 200 MS/s pipelined ADC. IEEE JSSC 42(12):1896–1906, Dec 2007Google Scholar
  18. 18.
    Van der Plas G, Verbruggen B (2008) A 150 MS/s 133 μW 7b ADC in 90 nm digital CMOS Using a comparator-based asynchronous binary-search sub-ADC. IEEE Digest of ISSCC 2008, paper 12.3Google Scholar
  19. 19.
    Kobayashi T et al (1993) A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE JSSC 28(4):523–527, April 1993Google Scholar
  20. 20.
    Nuzzo P et al. (2008) Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuits Sys I: Fundam Theory Appl 55(6): 1441–1454, July 2008CrossRefMathSciNetGoogle Scholar
  21. 21.
    Nuzzo P et al. (2006) Efficient calibration through statistical behavioral modeling of a high-speed low-power ADC. Proceedings of PRIME, pp. 297–300, Jun 2006Google Scholar
  22. 22.
    Daly D, Chandrakasan A (2008) A 6b 0.2-to-0.9 V highly digital flash ADC with comparator redundancy. ISSCC Digest of Technical Papers, pp. 554–555, Feb 2008Google Scholar
  23. 23.
    Petrescu V et al. (2006) A signal-integrity self-test concept for debugging nanometer CMOS ICs. ISSCC Digest of Technical Papers, pp. 544–545, Feb 2006Google Scholar
  24. 24.
    McCreary J, Gray P (1975) All-MOS charge redistribution Analog-to-Digital conversion techniques—Part I. IEEE J Solid-State Circuits 10(6):371–379, Dec 1975CrossRefGoogle Scholar
  25. 25.
    Verbruggen B et al. (2008) A 2.2 mW 5b 1.75 GS/s Folding Flash ADC in 90 nm Digital CMOS. ISSCC Digest of Technical Papers, pp. 252–253, Feb 2008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Interuniversity Microelectronics Center (IMEC)LeuvenBelgium

Personalised recommendations