Artificial Retina IC

Part of the Integrated Circuits and Systems book series (ICIR)


Artificial retina or, in general, artificial vision, is a prosthesis device to regain vision for the blind. The similar sensory prosthesis device is an artificial cochlea, which has been successfully developed and widely used in many deaf patients in the worldwide to regain sound. Now in the world, a number of research and development on artificial reina [17] are progressing and commercial products will be produced commercially in the near future.


Retinitis Pigmentosa Retinal Cell Secondary Coil Pulse Frequency Modulation CMOS Image Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The part of this research was supported by the Strategic Research Program for Brain Sciences, MEXT, Japan, by the Asahi Glass Foundation, and by a Health and Labour Sciences Research Grant, Japan. I would like to thank late Prof. Yasuo Tano and Porf. Takashi Fujikado of Osaka University, the member of Vision Institute of Nidek Co. Ltd., and Prof. Takashi Tokuda of Nara Institute of Scinece and Technology.


  1. 1.
    Asher A, Segal AW, Baccus AS, Yaroslavsky PL, Palanker D (2007) Image processign for a high-resolution optoelectronic retinal prosthesis. IEEE Trans Biomed Eng. 54(6):993–1004, July 2007CrossRefGoogle Scholar
  2. 2.
    Brindley GS, WS Lewin (1968) The visual sensations produced by electrical stimulation of the medical occiital cortex. J Physiol 194(2):54–59, Feb 1968Google Scholar
  3. 3.
    Cha K, Horch WK, Normann AR (1988) Mobility performance with a pixelized vision system. Vision Res 32(7):1367–1372CrossRefGoogle Scholar
  4. 4.
    Chaia X, Li U, Wu K, Zhou C, Caho P, Ren Q (2008) C-sight visual prostheses for the blind—optic nerve stimulation with penetrating electrode array. IEEE Eng Med Bio Mag 27(5):20–28, Sep–Nov 2008CrossRefGoogle Scholar
  5. 5.
    Chow YA, Chow YV, Packo K, Pollack J, Peyman G, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol 122(4):460–469CrossRefGoogle Scholar
  6. 6.
    Demosthenous A, Triantis FI, Liu X (2008) Circuits for implantable neural recording and stimulation, chapter 11. Artech House, Inc., Norwood, MAGoogle Scholar
  7. 7.
    Dobelle HW (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J.(Am Soc Artif Inter Organs J.), 46:3–9Google Scholar
  8. 8.
    Dollberg A, Graf GH, H¨offlinger B, Nisch W, DJS Spuentrup, Schumacher K (2003) Zrenner E. A Fully Testable Retinal Implant. In: Proceedings of International Conference on. Biomedical Engineering pp 255–260, Salzburg, June 2003Google Scholar
  9. 9.
    Franks W, Schenker I, Schmutz P, Hierlemann A (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302, July 2005CrossRefGoogle Scholar
  10. 10.
    Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245:1411–1419CrossRefGoogle Scholar
  11. 11.
    Furumiya T, Ng DC, Yasuoka K, Kagawa K, Tokuda T, Nunoshita M, Ohta J (2006) Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by in vitro electrophysiological experiments using frog retina. Biosensors Bioelectron, 21(7):1059–1068, Jan 2006CrossRefGoogle Scholar
  12. 12.
    The Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment. among adults in the United States. Arc Ophthalmol 122(4):477–485, April 2004Google Scholar
  13. 13.
    Hopkinson RG, Goodman MT, Prince RS (2004) A guide to the use and calibration of detector arrya equipment. SPIE Press, Bellingham, WashingtonGoogle Scholar
  14. 14.
    Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, Akguel H, R¨ossler G, Alteheld N, Notarp DL, Wyatt J, Richard G (2005) A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng 2(1):S129–S134CrossRefGoogle Scholar
  15. 15.
    Humayun SM, Prince M, de Juan E, Barron Y, Moskowitz M, Klock BI, Milam HA (1999). Morphometric analysis of the extramacular retina from postmorten eyes with retinitis pigmentosa. Invest Ophthalmol Visual Sci 40:143–148Google Scholar
  16. 16.
    Humayun SM, Weiland DJ, Fujii YG, Greenberg R, Williamson R, Little J, Cimmarusti V, Boeme VG, Dagnelie G,de Juan Jr. E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581Google Scholar
  17. 17.
    Rizzo FJ III, Snebold L, Kenny M (2007). Development of a visual prosthesis: a review of the field. Human Press Inc., Totowa, NJGoogle Scholar
  18. 18.
    Rizzo FJ III, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual Thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Visual Sci 44(12):5355–5361, Dec 2003CrossRefGoogle Scholar
  19. 19.
    Kagawa K, Yasuoka K, Ng DC, Furumiya T, Tokuda T, Ohta J, Nunoshita M (2004). Pulsedomain digital image processing for vision chips employing low-voltage operation in deepsubmicron technologies. IEEE Selct Topic Quantum Electron 10(4):816–828, July 2004CrossRefGoogle Scholar
  20. 20.
    Kamei M, Fujikado T, Kanda H, Morimoto T, Nakauchi K, Sakaguchi H, Ikuno Y, Ozawa M, Kusaka S, Tano Y (2006) Suprachoroidal-transretinal stimulation (sts) artificial vision system for patients with retinitis pigmentosa. Invest. Ophthalmol Visual Sci 47:E-Abstract 1537Google Scholar
  21. 21.
    Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004). Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Visual Sci 45(2):560–566CrossRefGoogle Scholar
  22. 22.
    Lehmann T, Woodburn R (1999). Biologically-inspired learning in pulsed neural networks. In: Cauwenberghs G, Bayoumi AM (eds) Learning on silicon: adaptive VLSI neural Systems. Kluwer Academic Pub, Norwell, MA, pp 105–130Google Scholar
  23. 23.
    Liu W, Humayun SM (2004). Retinal Prosthesis. In: Dig. Tech. Papers Int’l Solid-State Circuits Conf. (ISSCC), pp 218–219, San Francisco, CA, Feb 2004Google Scholar
  24. 24.
    Liu W, Vichienchom K, Clements M, DeMarco CS, Hughes C, McGucken E, Humayun SM, de Juan E, Weiland DJ, Greenberg R (2000). A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits 35:1487–1497, Oct 2000CrossRefGoogle Scholar
  25. 25.
    Maass W (1999). In: Bishop MC (ed). Pulsed neural networks. The MIT Press, Cambridge, MAGoogle Scholar
  26. 26.
    Research Report by Ministry of Health, Labour and Welfare of Japan, 2005Google Scholar
  27. 27.
    Mortimer TJ (1999) Electrical excitation of nerve, chapter 3. Prentice-Hall, Inc., Englewood Cliffs,NJGoogle Scholar
  28. 28.
    Ng DC, Furumiya T, Yasuoka K, Uehara A, Kagawa K, Tokuda T, Nunoshita M, Ohta J (2006) Pulse frequency modulation-based cmos image sensor for subretinal stimulation. IEEE Trans Circuits Sys II, 53(6):487–491, June 2006CrossRefGoogle Scholar
  29. 29.
    Nicholls GJ, Martin RA, Wallace GB, Fuchs AP (2001). From neuro to brain, 4th edn. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  30. 30.
    Normann RA, Greger BA, Paul House, Romero SF, Fernandez FPE (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6(2):1–8Google Scholar
  31. 31.
    Ohta J (2007) Smart CMOS image sensors and applications. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  32. 32.
    Ohta J, Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Nishida K, Kitaguchi Y, Kamei M, Fujikado T, Tano Y (2009). Retinal stimulator embedded with light-sensing function in distributed microchip architecture for subretinal implantation. In: International Image Sensor Workshop, Bergen, Norway, June 2009Google Scholar
  33. 33.
    Ohta J, Tokuda T, Kagawa K, Furumiya T, Uehara A, Terasawa Y, Ozawa M, Fujikado T, Tano Y (2006). Silicon LSI-based smart stimulators for retinal prosthesis. IEEE Eng Med Biol Mag 25(5):47–59, Oct 2006CrossRefGoogle Scholar
  34. 34.
    Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y (2007). Laboratory investigation of microelectronics-based stimulators for large-scale suprachroidal transretinal stimulation (STS). Neural J Eng.,4(1):S85–S91CrossRefGoogle Scholar
  35. 35.
    Ohta J, Tokuda T, Kagawa K, Terasawa Y, Ozawa M, Fujikado T, Tano Y (2007) Large-scale integration-based stimulus electrodes for retinal prosthesis. Springer, New York, NYGoogle Scholar
  36. 36.
    Ortmanns M, Rocke A, Gehrke M, Tiedtke H-J (2007) A 232-channel epiretinal stimulator ASIC. IEEE J Solid-State Circuits 42(12):2946–2959, Dec 2007CrossRefGoogle Scholar
  37. 37.
    Palanker D, Huie P, Vankov A, Asher A, Baccus S (2005). Towards high-resolution optoelectronic retinal prosthesis. BIOS, 5688AGoogle Scholar
  38. 38.
    Robblee SL Rose LT (1990) Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, chapter 2. Prentice-Hall, Inc., Englewood Cliffs, NJGoogle Scholar
  39. 39.
    Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Koch C, Krisch I, Sellhaus B, Trieu KH, Weis J, Bornfeld N, Ro”othgen H, Messner A (2009) In: Mokwa W, Walter P (eds). Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 Prospective Clinical Trial Invest Ophthalmol Visual Sci 50(6):3003–3008, June 2009Google Scholar
  40. 40.
    Rothermell A, Liu L, Aryan PN, Fischer M, Wuenschmann J, Kibbel S, Harscher A (2009). A CMOS chipwith active pixel arrya and spceific test features for subretinal implantation. IEEE J. Solid-State Circuits, 44(1):290–300, Jan 2009CrossRefGoogle Scholar
  41. 41.
    Rothermell A, Wieczorek V, Liu L, Stett A, Gerhardt M, Harscher A, Kibbel S (2008) A 1600-pixel subretinal chip with dc-free terminals and ±2v supply optimized for long lifetime and high stimulation efficiency. In Digest Technical Papers Internationall Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb 2008Google Scholar
  42. 42.
    Sakaguchi H, Kamei M, Fujikado T, Yonezawa E, Ozawa M, Cecilia-Gonzalez C, Ustariz-Gonzalez O, Quiroz-Mercado H, Tano Y (2008) Artificial vision by direct optic nerve electrode (AV-DONE) for a blind patient with retinitis pigmentosa. Invest Ophthalmol Visual Sci 49:S4044Google Scholar
  43. 43.
    Santos A, Humayun SM, de Juan, Greenburg JR, Marsh JM, Klock BI, Milam AH (1996) Preservation of the inner retina in retinitis pigmentosa; a morphometric analysis. Arc. Ophthalmol 114:40–46, 1996Google Scholar
  44. 44.
    Schwarz M, Hauschild R, Hosticka JB, Huppertz J, Kneip T, Kolnsberg S, Ewe L, Trieu KH (1999) Single-Chip CMOS Image sensors for a retina implant system. IEEE Trans.Circuits Sys II, 46(7):870–877, July 1999CrossRefGoogle Scholar
  45. 45.
    Suaning JG, Lovell HN (2001) CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry. IEEE Trans Biomed Eng 48(2):248–260, Feb 2001CrossRefGoogle Scholar
  46. 46.
    Tanaka T, Sato K, Komiya K, Kobayashi T, Watanabe T, Fukushima T, Tomita H, Kurino H, Tamai M, Koyanagi M (2007) Fully implantable retinal prosthesis chip with photodetector and stimulus current generator. In: Technology in Digest International Electron Devices Meeting (IEDM), pp 1015–1018, Washington, DC, December 2007Google Scholar
  47. 47.
    Terasawa Y, Tashiro H, Uehara A, Saito T, Ozawa M, Tokuda T, Ohta J (2006) The development of a multichnanel electrode array for retinal prosthesis. J Artif Organs 9(4):263–266, 2006CrossRefGoogle Scholar
  48. 48.
    Terasawa Y, Uehara A, Yonezawa E, Saitoh T, Shodo K, Ozawa M, Tano Y, Ohta J (2008). A visual prosthesis with 100 electrodes featuring wireless signals and wireless power transmission. IEICE Electronics Express, 5(15):574–580, 2008CrossRefGoogle Scholar
  49. 49.
    Theogarajan SL (2008). A low-power fully implantable 15-channel retinal stimulator chip. IEEE J. Solid-State Circuits, 43(10):2322–2377, Oct 2008CrossRefGoogle Scholar
  50. 50.
    Tokuda T, Asano R, Sugitani S, Taniyama M, Terasawa Y, Nunoshita M, Nakauchi K, Fujikado T, Tano Y, Ohta J (2008) Retinal stimulation on rabbit using CMOS-based multichip flexible stimulator toward retinal prosthesis. Jpn J Appl Phys 47(4B):3220–3225, April 2008CrossRefGoogle Scholar
  51. 51.
    Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Terasawa Y, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J (2009) CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis. IEEE Trans Electron Devices 56(11):2577–2585CrossRefGoogle Scholar
  52. 52.
    Tokuda T, Pan YL, Uehara A, Kagawa K, Nunoshita M, Ohta J (2009) Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensors & Actuators A, 122(1):88–98, July 2005Google Scholar
  53. 53.
    Tokuda T, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Kagawa K, Nunoshita M, Tano Y, Ohta J (2007) Fabrication and validation of a multi-chip neural stimulator for in vivo experiments toward retinal prosthesis. Jpn J Appl Phys 46(4B):2792–2798, April 2007CrossRefGoogle Scholar
  54. 54.
    Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 11:996–1004, 2003CrossRefGoogle Scholar
  55. 55.
    Wandell AB (1995) Foundations of vision. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  56. 56.
  57. 57.
    Wise DK, Anderson JD, Hetke FJ, Kipke RD, Najafi K (2004) Wireless implantable microsystems:high-density electronic interfaces to the nervous system. IEEE Proc 92(1):76–97, Jan 2004CrossRefGoogle Scholar
  58. 58.
    Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025, Feb 2002CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Graduate School of Materials ScienceNara Institute of Science and TechnologyNaraJapan

Personalised recommendations