Advertisement

Singular Support and \(\mathfrak{F}\)Lq Continuity of Pseudodifferential Operators

  • Stevan Pilipović
  • Nenad Teofanov
  • Joachim Toft
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 42)

Abstract

In this paper we show possible directions for numerical mathematicians interested in the approximation of different types of singular supports, wave front sets and of pseudodifferential operators in the framework of Fourier-Lebesgue spaces. The work contains new results on singular supports in Fourier-Lebesgue spaces and on the continuity properties of certain pseudodifferential operators.

Keywords

Characteristic Point Pseudodifferential Operator Continuity Property Modulation Space Open Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper was supported by the Serbian Ministry of Science and Technological Development (Project # 144016).

References

  1. 1.
    Boggiatto, P., Buzano, E., Rodino, L.: Global hypoellipticity and spectral theory. Mathematical Research, 92, Springer- Verlag, Berlin (1996)Google Scholar
  2. 2.
    Boulkhemair, A.: Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators. Math. Res. L. 4, 53–67 (1997)MATHMathSciNetGoogle Scholar
  3. 3.
    Cappiello, M., Rodino, L.: SG-pseudo-differential operators and Gelfand-Shilov spaces. Rocky Mountain J. Math. 36, 1117–1148 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cappiello, M., Gramchev, T., Rodino, L.: Exponential decay and regularity for SG-elliptic operators with polynomial coefficients. In: Hyperbolic problems and regularity questions (L. Zanghirati, M. Padula eds.), 49–58, Trends Math., Birkhäuser, Basel (2007)Google Scholar
  5. 5.
    Cordero, E., Nicola, F., Rodino, L.: Boundedness of Fourier integral operators on \(\mathcal{F}{L}^{p}\) spaces. Trans. Am. Math. Soc. 361, 6049–6071 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cordes, H.O.: The Technique of Pseudodifferential Operators. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  7. 7.
    Coriasco, S., Rodino, L.: Cauchy problem for SG-hyperbolic equations with constant multiplicities. Ricerche Mat. 48, 25–43 (1999)MATHMathSciNetGoogle Scholar
  8. 8.
    Concetti, F., Toft, J.: Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols, I. Ark. Mat. 47(2), 295–312 (2009)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dasgupta, A., Wong, M.W.: Spectral Theory of SG pseudo-diffeential operators on L p( n). Studia Math. 187(2), 185–197 (2008)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Egorov, Yu.V., Schulze, B.-W.: Pseudo-Differential Operators, Singularities, Applications. Birkhäuser (1997)Google Scholar
  11. 11.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol III, Springer-Verlag, Berlin (1994)Google Scholar
  12. 12.
    Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Okoudjou, K.A.: A Beurling-Helson type theorem for modulation spaces. J. Funct. Spaces Appl. 7(1), 33–41 (2009)MATHMathSciNetGoogle Scholar
  14. 14.
    Parenti, C.: Operatori pseudo-differentiali in n e applicazioni. Ann. Mat. Pura Appl. 93, 359–389 (1972)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pilipović, S., Teofanov, N., Toft, J.: Micro-local analysis in Fourier Lebesgue and modulation spaces. Part I. preprint (2008) available at arXiv:0804.1730Google Scholar
  16. 16.
    Pilipović, S., Teofanov, N., Toft, J.: Micro-local analysis in Fourier Lebesgue and modulation spaces. Part II. preprint (2009) available at arXiv:0805.4476Google Scholar
  17. 17.
    Pilipović, S., Teofanov, N., Toft, J.: Wave-front sets in Fourier-Lebesgue space. Rend. Sem. Mat. Univ. Politec. Torino 66(4), 41–61 (2008)Google Scholar
  18. 18.
    Pilipović, S., Teofanov, N., Toft, J.: Some applications of wave-front sets of Fourier Lebesgue types, I. In: 3rd Conference on Mathematical Modelling of Wave Phenomena, Växjö, Sweden, 9 – 13 June 2008, AIP Conference Proceeding 1106 (B. Nillson, L. Fishman, A. Karlsson, S. Nordebo, eds.), 26–35 (2009)Google Scholar
  19. 19.
    Ruzhansky, M., Sugimoto, M., Tomita, N., Toft, J.: Changes of variables in modulation and Wiener amalgam spaces. preprint (2008) available at arXiv:0803.3485v1Google Scholar
  20. 20.
    Strohmer, T.: Pseudo-differential operators and Banach algebras in mobile communications. Appl. Comput. Harmon. Anal. 20, 237–249 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Toft, J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus. I. J. Funct. Anal. 207, 399–429 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Toft, J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, II. Ann. Global Anal. Geom. 26, 73–106 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Toft, J.: Continuity and Schatten properties for pseudo-differential operators on modulation spaces. In: Modern Trends in Pseudo-Differential Operators, (J. Toft, M. W. Wong, H. Zhu, eds.), Birkhäuser Verlag, Basel, 173–206 (2007)Google Scholar
  24. 24.
    Toft, J., Concetti, F., Garello, G.: Trace ideals for Fourier integral operators with non-smooth symbols III. preprint, (2008) available at arXiv:0802.2352Google Scholar
  25. 25.
    Wong, M.W.: An Introduction to Pseudo-differential Operators, 2nd edn. World Scientific, Singapore (1999)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stevan Pilipović
    • 1
  • Nenad Teofanov
    • 1
  • Joachim Toft
    • 2
  1. 1.Faculty of Sciences, Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Computer ScienceMathematics and Physics Linnæus University VäxjöVäxjöSweden

Personalised recommendations