The Remainder Term of Gauss–Turán Quadratures for Analytic Functions

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 42)

Abstract

We consider quadrature rules with multiple nodes over a finite interval, taken to be [-1, 1]
$$\int^{1}_{-1} f(t) w(t) dt = \sum \limits ^n_{v=1} \sum \limits ^{2s}_{i=0}\, {\rm A_i},v f^(i) \,(\tau v) \,+\, {\rm R}_n,s(f), $$
(1)
involving a positive weight function w, assumed integrable over [-1, 1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, S: Sur les polynomes orthogonaux relatifs à un segment fini. J. Math. Pure Appl. 9, 127–177 (1930)Google Scholar
  2. 2.
    Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)MATHGoogle Scholar
  3. 3.
    Gautschi, W., Varga, R.S.: Error bounds for Gaussian quadrature of analytic functions. SIAM J. Numer. Anal. 20, 1170–1186 (1983)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gautschi, W., Tychopoulos, E., Varga, R.S.: A note on the contour integral representation of the remainder term for a Gauss–Chebyshev quadrature rule. SIAM J. Numer. Anal. 27, 219–224 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gori, L., Micchelli, C.A.: On weight functions which admit explicit Gauss–Turán quadrature formulas. Math. Comp. 65, 1567–1581 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)MATHGoogle Scholar
  7. 7.
    Heine, E.: Anwendungen der Kugelfunctionen und der verwandten Functionen. 2nd ed. Reimer, Berlin (1881) [I. Theil: Mechanische Quadratur, 1–31]Google Scholar
  8. 8.
    Hermite, C.: Sur la formule d’interpolation de Lagrange. J. Reine Angew. Math. 84, 70–79 (1878) [Oeuvres III, 432–443]Google Scholar
  9. 9.
    Hunter, D.B.: Some error expansions for Gaussian quadrature. BIT 35, 64–82 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kronrod, A.S.: Nodes and Weights for Quadrature Formulae. Sixteen Place Tables. Nauka, Moscow (1964) (Translation by Consultants Bureau, New York, 1965)Google Scholar
  11. 11.
    Kroó, A., Peherstorfer, F.: Asymptotic representation of L p-minimal polynimials, 1 < p < . Constr. Approx. 25, 29–39 (2007)Google Scholar
  12. 12.
    Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, S.: Kronrod extension of Turán formula. Studia Sci. Math. Hungar. 29, 71–83 (1994)MATHMathSciNetGoogle Scholar
  14. 14.
    Milovanović, G.V.: Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Milovanović, G.V., Spalević, M.M.: Error bounds for Gauss–Turán quadrature formulae of analytic functions. Math. Comp. 72, 1855–1872 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Milovanović, G.V., Spalević, M.M: Error analysis in some Gauss–Turán–Radau and Gauss–Turán-Lobatto quadratures for analytic functions. J. Comput. Appl. Math. 164–165, 569–586 (2004)Google Scholar
  17. 17.
    Milovanović, G.V., Spalević, M.M.: An error expansion for Gauss–Turán quadratures and L 1-estimates of the remainder term. BIT 45, 117–136 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Milovanović, G.V., Spalević, M.M.: Bounds of the error of Gauss–Turán-type quadratures. J. Comput. Appl. Math. 178, 333–346 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Milovanović, G.V., Spalević, M.M.: Gauss–Turán quadratures of Kronrod type for generalized Chebyshev weight functions. Calcolo 43, 171–195 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Milovanović, G.V., Spalević, M.M.: Quadrature rules with multiple nodes for evaluating integrals with strong singularities. J. Comput. Appl. Math. 189, 689–702 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Milovanović, G.V., Spalević, M.M.: On monotony of the error in Gauss–Turán quadratures for analytic functions. ANZIAM J. 48, 567–581 (2007)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Milovanović, G.V., Spalević, M.M., Cvetković, A.S.: Calculation of Gaussian type quadratures with multiple nodes. Math. Comput. Modelling 39, 325–347 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Milovanović, G.V, Spalević, M.M., Pranić, M.S.: Maximum of the modulus of kernels in Gauss–Turán quadratures. Math. Comp. 77, 985–994 (2008)Google Scholar
  24. 24.
    Milovanović, G.V., Spalević, M.M., Pranić, M.S.: Error estimates for Gauss–Turán quadratures and their Kronrod extensions. IMA J. Numer. Anal. 29, 486–507 (2009)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Milovanović, G.V., Spalević, M.M., Pranić, M.S.: Bounds of the error of Gauss–Turán-type quadratures II. Appl. Numer. Math. 60, 1–9 (2010)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Monegato, G.: Stieltjes polynomials and related quadrature rules. SIAM Rev. 24, 137–158 (1982)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Monegato, G.: An overview of the computational aspects of Kronrod quadrature rules. Numer. Algorithms 26, 173–196 (2001)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ossicini, A., Rosati, F.: Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli. Bull. Un. Mat. Ital. 11, 224–237 (1975)MathSciNetGoogle Scholar
  29. 29.
    Peherstorfer, F.: Gauss–Turán quadrature formulas: asymptotics of weights. SIAM J. Numer. Anal. 47, 2638–2659 (2009)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Peherstorfer, F., Petras, K.: Ultraspherical Gauss–Kronrod quadrature is not possible for λ > 3. SIAM J. Numer. Anal 37, 927–948 (2000)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Shi, Y.G.: Christoffel type functions for m-orthogonal polynomials. J. Approx. Theory 137, 57–88 (2005)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Shi, Y.G., Xu, G.: Construction of σ-orthogonal polynomials and Gaussian quadrature formulas. Adv. Comput. Math. 27, 79–94 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mechanical EngineeringUniversity of BeogradBeogradSerbia

Personalised recommendations