Advertisement

Capacitive Coupled Communication

  • David Hopkins
  • Alex Chow
  • Frankie Liu
  • Dinesh D. Patil
  • Hans Eberle
Chapter
Part of the Integrated Circuits and Systems book series (ICIR, volume 0)

Abstract

Capacitive coupled communication is a wireless chip to chip communication technology that uses capacitive coupling to transfer signals from a chip to neighboring chips. Its high-bandwidth, low-power, and low-latency chip-to-chip I/O capabilities enable the construction of high-performance and economical multi-chip modules (MCMs). Chips are placed face-to-face (Figure 1), with only a few microns of separation, such that overlapping transceiver circuits communicate through capacitive coupling between top-layer metal pads [1]. By using relatively small metal structures to communicate signals over short distances, capacitive coupled communication directly improves channel density, power, and latency to more closely match the performance of on-chip wires.

Keywords

Coupling Capacitance Chip Separation Multistage Network Chip Edge Pass Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Drost, R.D. Hopkins, R. Ho, I.E. Sutherland, “Proximity communication,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, 2004, pp. 1529–1535.CrossRefGoogle Scholar
  2. 2.
    A. Chow, D. Hopkins, R. Drost, R. Ho, “Exploiting capacitance in high-performance computer systems,” 4th Annual IEEE International Symposium on VLSI Design, Automation, and Test, 2008, pp. 55–58.Google Scholar
  3. 3.
    A.V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J.E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proceedings of the IEEE, vol. 97, no. 7, 2009.Google Scholar
  4. 4.
    J. Cunningham, X. Zheng, I. Shubin, R. Ho, J. Lexau, A.V. Krishnamoorthy, M. Asghari, D. Feng, J. Luff, H. Liang, C. Kung, “Optical proximity communication in packaged SiPhotonics,” 5th IEEE International Conference on Group IV Photonics, 2008.Google Scholar
  5. 5.
    X. Zheng, P. Koka, H. Schwetman, J. Lexau, R. Ho, I. Shubin, J. Cunningham, A.V. Krishnamoorthy, “A Silicon photonic WDM network for high performance macrochip communications,” Proceedings, SPIE Photonics West, Vol. 7221: Photonics packaging, integration, and interconnects IX, 2009.Google Scholar
  6. 6.
    N. Miura, Y. Kohama, Y. Sugimori, H. Ishikuro, T. Sakurai, T. Kuroda, “A high-speed inductive-coupling link with burst transmission,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, 2009, pp. 947–955.CrossRefGoogle Scholar
  7. 7.
    N. Miura, H. Ishikuro, T. Sakurai, T. Kuroda, “A 0.14 pJ/b inductive-coupling inter-chip data transceiver with digitally-controlled precise pulse shaping,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2007, pp. 358–359.Google Scholar
  8. 8.
    N. Miura, D. Mizoguchi, M. Inoue, K. Niitsu, Y. Nakagawa, M. Tago, M. Fukaishi, T. Sakurai, T. Kuroda, “A 1 Tb/s 3W inductive-coupling transceiver for inter-chip clock and data link,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2006, pp. 424–425.Google Scholar
  9. 9.
    N. Miura, D. Mizoguchi, M. Inoue, H. Tsuji, T. Sakurai, T. Kuroda, “A 195 Gb/s 1.2 W 3D-stacked inductive inter-chip wireless superconnect with transmit power control scheme,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2005, pp. 264–265.Google Scholar
  10. 10.
    J. Kim, B.S. Leibowitz, J. Ren, C.J. Madden, “Simulation and analysis of random decision errors in clocked comparators,” IEEE Transactions on Circuits and Systems I, in press.Google Scholar
  11. 11.
    P. Nuzzo, F. De Bernardinis, P. Terreni, G. Van der Plas, “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 6, 2008, pp. 1441–1454.CrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Drost, R. Ho, R. Hopkins, I. Sutherland, “Electronic alignment for proximity communication,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2004, pp. 144–518.Google Scholar
  13. 13.
    A. Chow, R. Hopkins, R. Ho, R. Drost, “Measuring 6D chip alignment in multi-chip packages,” 6th Annual IEEE Conference on Sensors, 2007, pp. 1307–10.Google Scholar
  14. 14.
    A.X. Widmer, P.A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM Journal of Research and Development, vol. 27, no. 5, 1983, pp. 440–452.CrossRefGoogle Scholar
  15. 15.
    R. Walker, R. Dugan, “64b/66b low-overhead coding proposal for serial links,” IEEE 802.3 HSSG 10G Study proposal, January 12, 2000.Google Scholar
  16. 16.
    D. Hopkins, A. Chow, R. Bosnyak, B. Coates, J. Ebergen, S. Fairbanks, J. Gainsley, R. Ho, J. Lexau, F. Liu, T. Ono, J. Schauer, I. Sutherland, R. Drost, “Circuit techniques to enable 430 Gb/s/mm/mm proximity communication,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2007, pp. 368–369.Google Scholar
  17. 17.
    H. Eberle, P.J. Garcia, J. Flich, J. Duato, R. Drost, N. Gura, D. Hopkins, W. Olesinski, “High-radix crossbar switches enabled by proximity communication,” Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David Hopkins
    • 1
  • Alex Chow
    • 1
  • Frankie Liu
    • 1
  • Dinesh D. Patil
    • 1
  • Hans Eberle
    • 1
  1. 1.Sun Microsystems Research LabsMenlo ParkUSA

Personalised recommendations