Skip to main content

ESD Clamps

  • Chapter
  • First Online:
Book cover ESD Design for Analog Circuits

Abstract

The previous chapter described ESD devices with emphasis on the positive and negative feedback effects realized on the structure level of the devices. The positive feedback effects have been identified through the conductivity modulation phenomena in the parasitic n–p–n, p–n–p, or p–n–p–n elementary structures. At the same time, ESD devices already include local and non-local current limiting on the device level. This feature provides the negative feedback that is used to suppress the excessive positive feedback and limit uncontrollable current density increase. Thus, the ESD device structure combines the active device regions with blocking junctions, the drift region, RESURF regions, control electrodes, and the contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juliano P, Anderson W (2003) ESD protection design challenges for a high pin-count alpha microprocessor in a 0.13um CMOS SOI technology. Proc. EOS/ESD Symp.

    Google Scholar 

  2. Vashchenko VA, Hopper P (2005) BSCR ESD protection in 250 V process taking into account the turn-off effect. Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 9–11 October 2005, 70–73.

    Google Scholar 

  3. Concannon A, Vashchenko VA, ter Beek M, Hopper P (2003) A device level negative feedback in the emitter line of SCR-structures as a method to realize latch-up free ESD protection. 41st Annual 2003 IEEE International Reliability Physics Symposium Proceedings, 30 March–4 April 2003, 105–111 .

    Google Scholar 

  4. Voldman SH (2004) ESD Physics and Devices. Wiley, Chichester.

    Book  Google Scholar 

  5. Synopsys (2002) MEDICI Two-Dimensional Device Simulation Program, Version 2002.4.0.

    Google Scholar 

  6. Stockinger M (2003) Boosted and distributed rail clamp networks for ESD protection in advanced CMOS technologies. EOS/ESD Symposium Proceedings.

    Google Scholar 

  7. Russ C, Mergens M, Verhaege K, et al. (2001) GGSCRs: GGNMOS triggered silicon controlled rectifiers for ESD protection in deep sub-micron CMOS processes. Proc. EOS/ESD Symp., pp. 22–31.

    Google Scholar 

  8. Chen J, Zhang X, Amerasekera A, Vrotsos T (1996) Design and layout of a high ESD performance NPN structure for submicron BiCMOS/bipolar circuits. Proc. Int. Rel. Phys. Symp., 227–232.

    Google Scholar 

  9. Coffing D, Ida R (1998) Analysis of a Zener-triggered bipolar ESD structure in a BiCMOS technology. Proc. BCTM, 227–232.

    Google Scholar 

  10. Chatterjee A, Polgreen T (1991) A low voltage triggering SCR for on-chip ESD protection at output and input pads. IEEE Electron Device Lett 12(1):21–22.

    Article  Google Scholar 

  11. Vashchenko VA, Kuznetsov V, Hopper P (2007) ESD protection of fast transient pins in bipolar processes. Bipolar/BiCMOS Circuits and Technology Meeting, BCTM ’07, IEEE, 222–225.

    Google Scholar 

  12. Vashchenko VA, Sinkevitch VF (1996) Current instability and burnout of HEMT structures. Solid-State Electron 39:851–856.

    Article  Google Scholar 

  13. Vashchenko VA, Concannon A, ter Beek M, Hopper P (2002) Emitter injection control in LVTSCR for latch-up free ESD protection. Proc. MIEL 2:741.

    Google Scholar 

  14. Quittard Q, Mrcarica Z, Blanc F, Notermans G, Smedes T, van Zvol H (2006) ESD protection for high voltage CMOS technologies. Proc. EOS/ESD Symp., 77–86.

    Google Scholar 

  15. Udrea F (2007) SOI-based devices and technologies for high voltage ICs. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, BCTM ’07, September 30, 2007–Oct. 2, 2007, 74–81.

    Google Scholar 

  16. Anderson W, Krakauer D (1998) Cross referenced ESD protection for power supplies. Proc. EOS/ESD Symp.

    Google Scholar 

  17. Maloney T, Kan W (1999) Stacked PMOS clamps for high voltage power supply protection. Proc. EOS/ESD Symp., 70–77.

    Google Scholar 

  18. Gerdemann A, Bhatia K, Rosenbaum E (2007) A Kelvin transmission line pulsing system with optimized oscilloscope ranging. Proc. EOS/ESD Symp., 80–88.

    Google Scholar 

  19. Tan PY, Indrajit M, Li PH, Voldman S (2005) RC-triggered PNP and NPN simultaneously switched silicon controlled rectifier ESD networks for sub-0.18 μm technology. Proc. Intl. Symp. on the Physical and Failure Analysis of Integrated Circuits, 71–75.

    Google Scholar 

  20. Vashchenko VA, Concannon A, ter Beek M, Hopper P (2003) ESD-implant effect on protection capability of NMOS structures. 33rd Conference on European Solid-State Device Research, 2003. ESSDERC ’03. 16–18 September 2003, 565–568.

    Google Scholar 

  21. Poon SS, Maloney T (2002) New consideration for MOSFET power clamps. Proc. EOS/ESD Symp., 1–5.

    Google Scholar 

  22. Di Sarro J, Vashchenko VA, Rosenbaum E, Hopper P (2008) A dual-base triggered SCR with very low leakage current and adjustable trigger voltage. 30th Electrical Overstress/Electrostatic Discharge Symposium, EOS/ESD, 7–11 September 2008, 242–248.

    Google Scholar 

  23. LVTSCR’s w emitter diodes ESDEOS.

    Google Scholar 

  24. Smedes T, Li Y (2003) ESD phenomena in interconnect structures. Proc. EOS/ESD Symp.

    Google Scholar 

  25. Li J, Gauthier R, Rosenbaum E (2004) A compact, timed shut-off, MOSFET-based power clamp foe on chip ESD protection. Proc. EOS/ESD Symp.

    Google Scholar 

  26. Worley ER, Gupta R, Jones B, et al. (1995) Sub-micron chip ESD protection schemes which avoid avalanching junctions. Proc. EOS/ESD Symp., 13–20.

    Google Scholar 

  27. Croft G (1996) Transient supply clamp with variable RC time constant. Proc. EOS/ESD Symp.

    Google Scholar 

  28. Chen JZ, Amerasekera A, Vrotos T (1995) Bipolar SCR ESD protection for high speed submicron bipolar/BiCMOS frequency integrated circuits. IEDM, 337–340.

    Google Scholar 

  29. Vashchenko VA, Hopper P (2005) Bipolar SCR ESD devices. Microelectron Reliab 45:457–471.

    Article  Google Scholar 

  30. Trajkovic T, Udugampola N, Pathirana V, Mihaila A, Udrea F, Amaratunga GA, Koutny B, Ramkumar K, Geha S (2009) High frequency 700 V PowerBrane LIGBTs in 0.35 μm bulk CMOS technology. 21st International Symposium on Power Semiconductor Devices & IC’s, ISPSD 2009, 14–18 June 2009, 307–310.

    Google Scholar 

  31. Proceedings of EOSESD Symposiums (1997–2007).

    Google Scholar 

  32. Dabral S, Aslett R, Maloney T (1994) Core clamps for low voltage technologies. Proc. EOS/ESD Symp.

    Google Scholar 

  33. Di Sarro J, Chatty K, Gauthier R, Rosenbaum E (2007) Evaluation of SCR-based ESD protection in 90 nm and 65 nm CMOS technologies. Proc. Intl. Reliability Physics Symp., 348–357.

    Google Scholar 

  34. Avery L (1983) Using SCR’s as transient protection structures in integrated circuits. Proceedings of ESD/EOS Symposium, 27–29.

    Google Scholar 

  35. Synopsys (2002) “TSUPREM-4” Two-Dimensional Process Simulation Program, Version 2002.4.0.

    Google Scholar 

  36. Vashchenko VA, Olson N, Farrenkopf D, Kuznetsov V, Hopper P, Rosenbaum E (2007) Mixed device-circuit solution for ESD protection of high-voltage fast pins. 45th Annual IEEE International Reliability Physics Symposium, Proceedings, 15–19 April 2007, 602–603.

    Google Scholar 

  37. Vassilev V, Lorenzini M, Jansen P, Vashchenko VA, et al. (2003) Snapback circuit model for cascoded NMOS ESD over-voltage protection structures. 33rd Conference on European Solid-State Device Research, 2003. ESSDERC ’03, 16–18 September 2003, 561–564.

    Google Scholar 

  38. Stockinger M, Miller J (2004) Advanced ESD rail clamp network design for high-voltage CMOS applications. Proc. EOS/ESD Symp.

    Google Scholar 

  39. Keppens B, Mergens M, Armer J, et al. (2003) Active-area-segmentation (AAS) technique for compact ESD robust, fully silicided NMOS design. Proc. EOS/ESD Symp., 250–258.

    Google Scholar 

  40. Vashchenko VA, Hopper P (2006) A new principle for a self-protecting power transistor array design. Power Semiconductor Devices and IC’s, ISPSD 2006. IEEE International Symposium on 4–8 June 2006, 1–4; Vashchenko VA, Hopper PJ (2006) Self-protecting arrays for open drain circuits. 44th Annual IEEE International Reliability Physics Symposium Proceedings, 26–30 March 2006, 637–638.

    Google Scholar 

  41. Olson N, Vashchenko V, Rosenbaum E, Hopper P (2008) Small footprint trigger voltage control circuit for mixed-voltage applications. 30th Electrical Overstress/Electrostatic Discharge Symposium, EOS/ESD, 7–11 September 2008, 196–203.

    Google Scholar 

  42. Voldman SH (2006) ESD RF Technology and Circuits. Wiley, Chichester.

    Book  Google Scholar 

  43. PDK Documents for Vanguard 0.20um UHV BCD Process.

    Google Scholar 

  44. Meneghesso G, Tazzoli A, Marino FA, Cordoni M, Colombo P. Development of a new high holding voltage SCR-based ESD protection structure. IEEE International Reliability Physics Symposium, IRPS 2008, April 27–May 1 2008, 3–8.

    Google Scholar 

  45. Voldman SH (2005) ESD Circuits and Devices. Wiley, Chichester.

    Book  Google Scholar 

  46. Vashchenko VA, Concannon A, ter Beek M, Hopper P (2004) High holding voltage cascoded LVTSCR structures for 5.5-V tolerant ESD protection clamps. IEEE Trans Device Material Reliab 4(2):273–280.

    Article  Google Scholar 

  47. Vashchenko VA, Farrenkopf D, Hopper P (2007) Active control of the triggering characteristics of NPN BJT, BSCR and NLDMOS-SCR devices. 19th International Symposium on Power Semiconductor Devices and IC’s, ISPSD ’07, 27–31 May 2007, 41–44.

    Google Scholar 

  48. Boselli G, Duvvury C, Reddy V (2003) Efficient pnp characteristics of pMOS transistors in sub-0.13um ESD protection circuits. Proc. EOS/ESD Symp., 257–266.

    Google Scholar 

  49. Vashchenko VA, Concannon A, ter Beek M, Hopper P (2003) Increasing the ESD protection capability of over-voltage NMOS structures by comb-ballasting region design. 41st Annual 2003 IEEE International Reliability Physics Symposium Proceedings, 30 March–4 April 2003, 261–268.

    Google Scholar 

  50. Merrill R, Issaq E (1993) ESD design methodology. Proc. ESD/EOS Symposium, 233–237.

    Google Scholar 

  51. Linten D, Vashchenko VA, Scholz M, et al. (2008) Extreme voltage overshoots in HV snapback devices during HBM ESD stress. Proc. EOS/ESD Symp.

    Google Scholar 

  52. Mergens M, Russ C, Verhaege K, et al. (2003) Diode-triggered SCR (DTSCR) for RF-ESD protection of BiCMOS SiGe HBTs and CMOS ultra-thin gate oxides. Intl. Electron Devices Meeting Technical Digest, 515–518.

    Google Scholar 

  53. Duvvury C, Ramaswamy S, Amerasekera A, Cline RA, Andresen BH, Gupta V (2000) Substrate pump NMOS for ESD protection applications. Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 26–28 September 2000, 7–17.

    Google Scholar 

  54. Smedes T, Heringa A, van Zwol J , de Jong P (2002) The impact of substrate resistivity on ESD protection devices. Proc. EOS/ESD Symp., 354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Vashchenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vashchenko, V.A., Shibkov, A. (2010). ESD Clamps. In: ESD Design for Analog Circuits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6565-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6565-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6564-6

  • Online ISBN: 978-1-4419-6565-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics