Skip to main content

Conductivity Modulation in Semiconductor Structures Under Breakdown and Injection

  • Chapter
  • First Online:

Abstract

Understanding semiconductor structure operation under ESD pulse conditions at the physical level is critical for successful protection circuit design. In spite of the use of a variety of ESD protection devices and clamps for analog circuit protection, there are several fundamental physical effects taking place during a high-current ESD event. These effects are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Concannon A, Vashchenko VA, ter Beek M, Hopper P (2003) A device level negative feedback in the emitter line of SCR-structures as a method to realize latch-up free ESD protection. 41st Annual 2003 IEEE International Reliability Physics Symposium Proceedings, 30 March–4 April 2003, 105–111 .

    Google Scholar 

  2. Voldman SH (2004) ESD Physics and Devices. Wiley, Chichester.

    Book  Google Scholar 

  3. Russ C, Mergens M, Verhaege K, et al. (2001) GGSCRs: GGNMOS triggered silicon controlled rectifiers for ESD protection in deep sub-micron CMOS processes. Proc. EOS/ESD Symp., pp. 22–31.

    Google Scholar 

  4. Kerner BS, Osipov VV (1994) Autosolitons. A new approach to Problems of Self-Organization and Turbulence. Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  5. Dabral S, Maloney TJ (1998) Basic ESD and I/O Design. Wiley, West Sussex.

    Google Scholar 

  6. Scholl E (1987) Nonequilibrium Phase Transition in Semiconductors Self-organization Induced by Generation and Recombination Process. Springer, Heidelberg.

    Book  Google Scholar 

  7. DECIMMTM Angstrom Design Automation, Release 2.0, http://www.analogesd.com

  8. Bonch-Bruevitch VL, Zviagin NP, Mironov AG (1975) Domain Electrical Instability in Semiconductors. Nauka, Moskow.

    Google Scholar 

  9. Tazzoli A, Danesin F, Zanoni E, Meneghesso G (2007) ESD robustness of AlGaN/GaN HEMT devices, 29th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), EOS/ESD 16–21 September 2007. 4A.4-1–4A.4-9

    Google Scholar 

  10. Amerasekera A, Duvury C (1995) ESD in Silicon Integrated Circuits. Wiley, West Sussex.

    Google Scholar 

  11. Vashchenko VA, Sinkevitch VF (1996) Current instability and burnout of HEMT structures. Solid-State Electron 39:851–856.

    Article  Google Scholar 

  12. Vashchenko VA, Sinkevitch VF (2008) Physical Limitations of Semiconductor Devices. Springer, Berlin.

    Book  Google Scholar 

  13. Sze S (1981) Physics of Semiconductor Devices. Wiley, New York, NY.

    Google Scholar 

  14. Scholz M, et al. (2008) On-wafer human metal model – system-level ESD stress on component level. Proc. RCJ EOS/ESD/EMC Symposium, 91–97.

    Google Scholar 

  15. Nikolis R, Prigogine I (1979) Self-organization in nonequilibrium systems. Mir, Moscow.

    Google Scholar 

  16. Vashchenko VA, Martynov YB, Sinkevitch VF (1997) Simulation of multiple filaments in GaAs structures. Solid-State Electron 41:75–80.

    Article  Google Scholar 

  17. Vashchenko VA, Hopper P (2005) Bipolar SCR ESD devices. Microelectron Reliab 45:457–471.

    Article  Google Scholar 

  18. Proceedings of EOSESD Symposiums (1997–2007).

    Google Scholar 

  19. Haken H (1980) Sinergetics. Mir, Moscow.

    Google Scholar 

  20. Hanwa. HBM, MMWaveform Capture System.

    Google Scholar 

  21. Vashchenko VA, Kuznetsov V, Hopper P (2007) Implementation of dual-direction SCR devices in analog CMOS process. Proc. EOSESD Symp., 75–79.

    Google Scholar 

  22. Keppens B, Mergens M, Armer J, et al. (2003) Active-area-segmentation (AAS) technique for compact ESD robust, fully silicided NMOS design. Proc. EOS/ESD Symp., 250–258.

    Google Scholar 

  23. Oxner ES (1985) Power Field Effect Transistor and Its Application. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  24. Vashchenko VA, Martynov YB, Sinkevitch VF, Tager AS (1996) Current instability in GaAs n+-i-n+ structures as a limitation of the maximum drain voltage of power MESFET’s. Solid-State Electron 39:1027–1031.

    Article  Google Scholar 

  25. Moens P, Bychinkin S, Reynders K, et al. (2004) Effect of hot spot hopping and drain ballasting integrated vertical DMOS devices under TLP stress. Proc. Int. Rel. Phys. Symp., 393–398.

    Google Scholar 

  26. Voldman SH (2006) ESD RF Technology and Circuits. Wiley, Chichester.

    Book  Google Scholar 

  27. Scholz M, et al. (2007) Calibrated wafer-level HBM measurements for quasi-static and transient device analysis. Proceedings of EOS/ESD Symposium, 89–94.

    Google Scholar 

  28. Voldman SH (2005) ESD Circuits and Devices. Wiley, Chichester.

    Book  Google Scholar 

  29. Vashchenko VA,Martynov YB, Sinkevitch VF (1997) Solid-State Electronics, 41:1761.

    Google Scholar 

  30. Estmark K, Gossner H, Stadler W (2003) Advanced Simulation Methods for ESD Protection. Elsevier, Amsterdam.

    Google Scholar 

  31. Sleiman A, Di Carlo A, Lugli P, Meneghesso G, Zanoni E, Thobel JL (2003) Channel thickness dependence of breakdown dynamic in InP-based lattice-matched HEMTs. IEEE Trans Electron Devices 50(10):2009–2014.

    Article  Google Scholar 

  32. Gossner H, Muller-Lynch T, Eastmark K, Stecher M (1999) Wide range control of sustaining voltage of ESD protection elements realized in smart power technology. Proc. EOS/ESD Symp., 19–27.

    Google Scholar 

  33. Vashchenko VA, Martynov YB, Sinkevitch VF (1996) Physical limitation on drain voltage of power PM HEMT. Microelectron Reliab 37:1137–1141.

    Google Scholar 

  34. Vashchenko VA, Kozlov NA, Martynov YB, Sinkevitch VF, Tager AS (1996) Negative differential conductivity and isothermal drain breakdown of the GaAs MESFET. IEEE Trans Electron Dev 43: 513–518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Vashchenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vashchenko, V.A., Shibkov, A. (2010). Conductivity Modulation in Semiconductor Structures Under Breakdown and Injection. In: ESD Design for Analog Circuits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6565-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6565-3_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6564-6

  • Online ISBN: 978-1-4419-6565-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics