Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines

  • Marco Canepari
  • Marko Popovic
  • Kaspar Vogt
  • Knut Holthoff
  • Arthur Konnerth
  • Brian M. Salzberg
  • Amiram Grinvald
  • Srdjan D. Antic
  • Dejan Zecevic


A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly are signals integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes that determine the input–output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the msethod of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines.


Fluorescence Resonance Energy Transfer Second Harmonic Generation Dendritic Spine Shot Noise Optical Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acker CD, Antic SD (2009) Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J Neurophysiol 101:1524–1541.PubMedCrossRefGoogle Scholar
  2. Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550:35–50.PubMedCrossRefGoogle Scholar
  3. Antic S, Zecevic D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15:1392–1405.PubMedGoogle Scholar
  4. Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82:1615–1621.PubMedGoogle Scholar
  5. Antic S, Wuskell JP, Loew L, Zecevic D (2000) Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. J Physiol 527:55–69.PubMedCrossRefGoogle Scholar
  6. Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516.PubMedCrossRefGoogle Scholar
  7. Araya R, Jiang J, Eisenthal KB, Yuste R (2006a) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103:17961–17966.PubMedCrossRefGoogle Scholar
  8. Araya R, Eisenthal KB, Yuste R (2006b) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103:18799–18804.PubMedCrossRefGoogle Scholar
  9. Bennett CB, Muschol M (2009) Large neurohypophysial varicosities amplify action potentials: results from numerical simulations. Endocrinology 150:2829–2836.PubMedCrossRefGoogle Scholar
  10. Bischofberger J, Engel D, Li L, Geiger JRP, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1: 2075–2081.PubMedCrossRefGoogle Scholar
  11. Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869.PubMedCrossRefGoogle Scholar
  12. Bradley J, Luo R, Otis TS, DiGregorio DA (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 29:9197–9209.PubMedCrossRefGoogle Scholar
  13. Cacciatore TW, Brodfuehrer PD et al (1999) Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 23:449–459.PubMedCrossRefGoogle Scholar
  14. Canepari M, Vogt KE (2008) Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP. PLoS ONE 3:e4011.PubMedCrossRefGoogle Scholar
  15. Canepari M, Djurisic M, Zecevic D (2007) Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium imaging study. J Physiol 580:463–484.PubMedCrossRefGoogle Scholar
  16. Canepari M, Vogt K, Zecevic D (2008) Combining voltage and calcium imaging from neuronal dendrites. Cell Mol Neurobiol 58:1079–1093.CrossRefGoogle Scholar
  17. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46.PubMedCrossRefGoogle Scholar
  18. Chanda B, Blunck R et al (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8:1619–1626.PubMedCrossRefGoogle Scholar
  19. Cohen LB, Lesher S (1986) Optical monitoring of membrane potential: methods of multisite optical measurement. Soc Gen Physiol Ser 40:71–99.PubMedGoogle Scholar
  20. Cohen LB, Salzberg BM et al (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19:1–36.PubMedCrossRefGoogle Scholar
  21. Dainty JC (1984) Laser speckle and related phenomena. Springer, New York.Google Scholar
  22. Davila HV, Cohen LB, Salzberg BM, Shrivastav BB (1974) Changes in ANS and TNS fluorescence in giant axons from Loligo. J Membr Biol 15:29–46.PubMedCrossRefGoogle Scholar
  23. Dimitrov D, He Y et al (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE 2:e440.PubMedCrossRefGoogle Scholar
  24. Djurisic M, Antic S, Chen WR, Zecevic D (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24:6703–6714.PubMedCrossRefGoogle Scholar
  25. Djurisic M, Popovic M, Carnevale N, Zecevic D (2008) Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. J Neurosci 28:4057–4068.PubMedCrossRefGoogle Scholar
  26. Dombeck DA, Sacconi L, Blanchard-Desce M, Webb WW (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94:3628–3636.PubMedCrossRefGoogle Scholar
  27. Fisher JA, Barchi JR et al (2008) Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol 99:1545–1553.PubMedCrossRefGoogle Scholar
  28. Gonzalez JE, Tsien RY (1995) Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys J 69:1272–1280.PubMedCrossRefGoogle Scholar
  29. Gonzalez JE, Tsien RY (1997) Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem Biol 4: 269–277.PubMedCrossRefGoogle Scholar
  30. Gratton E, vande Ven MJ (1989) Laser sources for confocal microscopy. In Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York.Google Scholar
  31. Grinvald A, Farber IC (1981) Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam. Science 212:1164–1167.PubMedCrossRefGoogle Scholar
  32. Grinvald A, Ross WN, Farber I (1981) Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc Natl Acad Sci U S A 78:3245–3249.PubMedCrossRefGoogle Scholar
  33. Grinvald A, Hildesheim R, Farber IC, Anglister L (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39:301–308.PubMedCrossRefGoogle Scholar
  34. Grinvald A, Salzberg BM, Lev-Ram V, Hildesheim, R (1987) Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys J 51:643–651.PubMedCrossRefGoogle Scholar
  35. Gupta, RK, Salzberg BM et al (1981) Improvements in optical methods for measuring rapid changes in membrane potential. J Membr Biol 58: 123–137.PubMedCrossRefGoogle Scholar
  36. Holthoff H, Zecevic D, Konnerth A (2010) Rapid time-course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J Physiol 588:1085–1096.PubMedCrossRefGoogle Scholar
  37. Iwasato T, Datwani A et al (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–731PubMedCrossRefGoogle Scholar
  38. Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Oxford University Press, London.Google Scholar
  39. Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26: 7424–7432.PubMedCrossRefGoogle Scholar
  40. Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205.PubMedCrossRefGoogle Scholar
  41. Knöpfel T, Tomita K, Shimazaki R, Sakai R (2003) Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 30:42–48.PubMedCrossRefGoogle Scholar
  42. Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 14:4705–4715.Google Scholar
  43. Konnerth A, Obaid AL, Salzberg BM (1987) Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. J Physiol 393:681–702.PubMedGoogle Scholar
  44. Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639.PubMedCrossRefGoogle Scholar
  45. Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760.PubMedCrossRefGoogle Scholar
  46. Loew LM (1982) Design and characterization of electrochromic membrane probes. J Biochem Biophys Methods 6:243–260.PubMedCrossRefGoogle Scholar
  47. Matsukawa H, Wolf AM, Matsushita S, Joho RH, Knöpfel T (2003) Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J Neurosci 23:7677–7684.PubMedGoogle Scholar
  48. Milojkovic BA, Zhou WL, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585:447–468.PubMedCrossRefGoogle Scholar
  49. Moreaux L, Sandre O, Mertz J (2000) Membrane imaging by second harmonic generation microscopy. J Opt Soc Am B 17:1685–1694.CrossRefGoogle Scholar
  50. Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214.PubMedCrossRefGoogle Scholar
  51. Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622.PubMedCrossRefGoogle Scholar
  52. Nuriya M, Jiang J, Nemet B, Eisenthal KB, Yuste R (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103:786–790.PubMedCrossRefGoogle Scholar
  53. Obaid AL, Shimizu H, Salzberg BM (1982) Intracellular staining with potentiometric dyes: optical signals from identified leech neurons and their processes. Biol Bull 163:388.Google Scholar
  54. Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863.PubMedCrossRefGoogle Scholar
  55. Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903.PubMedCrossRefGoogle Scholar
  56. Parsons TD, Kleinfeld D Raccuia F, Salzberg BM (1989) Optical recording of the electrical activity of synaptically interacting neurons in culture using potentiometric probes. Biophys J 56:213–221.PubMedCrossRefGoogle Scholar
  57. Parsons TD, Salzberg BM, Obaid AL, Raccuia-Behling F, Kleinfeld D (1991) Long-term optical recording of electrical activity in ensembles of cultured Aplysia neurons. J Neurophysiol 66:316–333.PubMedGoogle Scholar
  58. Roberts MJ (2004) Signals and systems: analysis using transform methods and MATLAB. McGraw-Hill, New York.Google Scholar
  59. Rohr S, Salzberg BM (1994) Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys J 67:1301–1315.PubMedCrossRefGoogle Scholar
  60. Ross WN, Krauthamer V (1984) Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion. J Neurosci 4:659–672.PubMedGoogle Scholar
  61. Sabatini BS, Oertner, TG, Svoboda, K. (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33:439–452.PubMedCrossRefGoogle Scholar
  62. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318.PubMedCrossRefGoogle Scholar
  63. Salzberg BM (1978) Optical signals from giant axon following perfusion or superfusion with potentiometric probes. Biol Bull 155:463–464Google Scholar
  64. Segev I, Rall W (1988) Computational study of an excitable dendritic spine. J Neurophysiol 60:499–523.PubMedGoogle Scholar
  65. Shoham D, Glaser DE et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802.PubMedCrossRefGoogle Scholar
  66. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441:761–765.PubMedCrossRefGoogle Scholar
  67. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741.PubMedCrossRefGoogle Scholar
  68. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.PubMedCrossRefGoogle Scholar
  69. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518.PubMedCrossRefGoogle Scholar
  70. Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719.PubMedCrossRefGoogle Scholar
  71. Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937.PubMedGoogle Scholar
  72. Waggoner AS, Grinvald A (1977) Mechanisms of rapid optical changes of potential sensitive dyes. Ann N Y Acad Sci 303:217–242.PubMedGoogle Scholar
  73. Wu JY, Cohen, LB, Falk CX (1999) Fast multisite optical measurement of membrane potential with two examples. In: Mason WT (ed) Fluorescence and luminescence probes. Academic Press, London.Google Scholar
  74. Wuskell JP, Boudreau D et al (2006) Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods 151:200–215.PubMedCrossRefGoogle Scholar
  75. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.PubMedCrossRefGoogle Scholar
  76. Zecevic D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325.PubMedCrossRefGoogle Scholar
  77. Zhou W-L, Yan P, Wuskell JP, Loew LM, Antic SD (2007) Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Methods 164:225–239.PubMedCrossRefGoogle Scholar
  78. Zhou WL, Yan P, Wuskell JP, Loew LM, Antic SD (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27:923–936.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marco Canepari
    • 1
  • Marko Popovic
    • 2
  • Kaspar Vogt
    • 1
  • Knut Holthoff
    • 3
  • Arthur Konnerth
    • 4
  • Brian M. Salzberg
    • 5
  • Amiram Grinvald
    • 6
  • Srdjan D. Antic
    • 7
  • Dejan Zecevic
    • 2
  1. 1.Division of Pharmacology and NeurobiologyBiozentrum – University of BaselBaselSwiterland
  2. 2.Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenUSA
  3. 3.Hans Berger Klinik für NeurologieFriedrich-Schiller-Universität JenaJenaGermany
  4. 4.Center for Intergrated Protein Science and Institute of NeuroscienceTechnical University MunichMunichGermany
  5. 5.Departments of Neuroscience and PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvania
  6. 6.Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
  7. 7.Department of NeuroscienceUConn Health CenterFarmingtonUSA

Personalised recommendations