Gamete Preservation

  • Susan L. Barrett
  • Teresa K. Woodruff
Part of the Cancer Treatment and Research book series (CTAR, volume 156)


With the increase in survivorship following cancer for women in their reproductive years, as well as an increase in survivorship with childhood cancers, there is a demand for perfecting current fertility preservation methods and generating new options for patients who are unable to pursue the conventional course of fertility treatments. Cryopreservation using a slow-cooling method for embryos is currently the standard-of-care for women wishing to preserve their fertility; other options, such as oocyte cryopreservation and embryo vitrification, have become increasingly accepted methods of fertility preservation.


Ovarian Tissue Fertility Preservation Primordial Follicle Preovulatory Follicle Secondary Follicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Steve Mullen, Ph.D., for his critical review and input on the cryopreservation section. This research was supported by the oncofertility consortium NIH 8UL1DE019587, 5RL1HD058296. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.


  1. 1.
    Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963; 158:417–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Baker TG, Sum W. Development of the ovary and oogenesis. Clin Obstet Gynaecol. 1976; 3(1):3–26.PubMedGoogle Scholar
  3. 3.
    Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol. 2000; 163(1–2):43–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986; 1(2):81–7.PubMedGoogle Scholar
  5. 5.
    Sforza C, Vizzotto L, Ferrario VF, Forabosco A. Position of follicles in normal human ovary during definitive histogenesis. Early Hum Dev. 2003; 74(1):27–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Macklon NS, Fauser BC. Aspects of ovarian follicle development throughout life. Horm Res. 1999; 52(4):161–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Peters H, Himelstein-Braw R, Faber M. The normal development of the ovary in childhood. Acta Endocrinol (Copenh). 1976; 82(3):617–30.Google Scholar
  8. 8.
    Zhao M, Dean J. The zona pellucida in folliculogenesis, fertilization and early development. Rev Endocr Metab Disord. 2002; 3(1):19–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Levy DP, Navarro JM, Schattman GL, Davis OK, Rosenwaks Z. The role of LH in ovarian stimulation: exogenous LH: let’s design the future. Hum Reprod. 2000; 15(11):2258–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod. 1983; 28(4):797–803.PubMedCrossRefGoogle Scholar
  11. 11.
    Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990; 253(1):71–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Furger C, Cronier L, Poirot C, Pouchelet M. Human granulosa cells in culture exhibit functional cyclic AMP-regulated gap junctions. Mol Hum Reprod. 1996; 2(8):541–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N. Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology. 2006; 147(5):2280–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994; 50(2):266–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007; 77(1):2–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Gilchrist RB, Nayudu PL, Nowshari MA, Hodges JK. Meiotic competence of marmoset monkey oocytes is related to follicle size and oocyte-somatic cell associations. Biol Reprod. 1995; 52(6):1234–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004; 2:31.PubMedCrossRefGoogle Scholar
  18. 18.
    Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online. 2004; 9(6):680–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Mullen SF, Critser JK. The science of cryobiology. In: Woodruff TK, Snyder KA, Eds. Oncofertility: fertility preservation for cancer survivors. New York: Springer; 2007:83–103.CrossRefGoogle Scholar
  20. 20.
    Mazur P Slow-freezing injury in mammalian cells. Ciba Found Symp. 1977; 52:19–48.PubMedGoogle Scholar
  21. 21.
    Whittingham DG Some factors affecting embryo storage in laboratory animals. Ciba Found Symp. 1977; 52:97–127.PubMedGoogle Scholar
  22. 22.
    Leibo SP Fundamental cryobiology of mouse ova and embryos. Ciba Found Symp. 1977; 52:69–96.PubMedGoogle Scholar
  23. 23.
    Leibo SP, McGrath JJ, Cravalho EG. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology. 1978; 15(3):257–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res. 1972; 71(2):345–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Lovelock JE. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953; 10(3):414–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953; 11(1):28–36.PubMedCrossRefGoogle Scholar
  27. 27.
    De Santis L, Coticchio G, Paynter S, Albertini D, Hutt K, Cino I, Iaccarino M, Gambardella A, Flamigni C, Borini A. Permeability of human oocytes to ethylene glycol and their survival and spindle configurations after slow cooling cryopreservation. Hum Reprod. 2007; 22(10):2776–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Karlsson JO, Younis AI, Chan AW, Gould KG, Eroglu A. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev. 2009; 76(4):321–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu J, Mullen S, Meng Q, Critser J, Dinnyes A. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology. 2009; 59(2):127–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Jackowski S, Leibo SP, Mazur P. Glycerol permeabilities of fertilized and infertilized mouse ova. J Exp Zool. 1980; 212(3):329–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Kasai M, Iritani A, Chang MC. Fertilization in vitro of rat ovarian oocytes after freezing and thawing. Biol Reprod. 1979; 21(4):839–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Pedro PB, Yokoyama E, Zhu SE, Yoshida N, Valdez DM Jr, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J Reprod Dev. 2005; 51(2):235–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Songsasen N, Yu IJ, Ratterree MS, VandeVoort CA, Leibo SP. Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes. Fertil Steril. 2002; 77(4):818–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Paynter SJ, O’Neil L, Fuller BJ, Shaw RW. Membrane permeability of human oocytes in the presence of the cryoprotectant propane-1,2-diol. Fertil Steril. 2001; 75(3):532–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Fuller BJ, Paynter SJ. Cryopreservation of mammalian embryos. Methods Mol Biol. 2007; 368:325–39.PubMedCrossRefGoogle Scholar
  36. 36.
    Trad FS, Toner M, Biggers JD. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod. 1999; 14(6):1569–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Younis AI, Toner M, Albertini DF, Biggers JD. Cryobiology of non-human primate oocytes. Hum Reprod. 1996; 11(1):156–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Karlsson JO, Eroglu A, Toth TL, Cravalho EG, Toner M. Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod. 1996; 11(6):1296–305.PubMedCrossRefGoogle Scholar
  39. 39.
    Toner M, Cravalho EG, Armant DR. Water transport and estimated transmembrane potential during freezing of mouse oocytes. J Membr Biol. 1990; 115(3):261–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2007; 368:39–57.PubMedCrossRefGoogle Scholar
  41. 41.
    Fabbri R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank. 2006; 7(2):113–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Fabbri R, Pasquinelli G, Bracone G, Orrico C, Di Tommaso B, Venturoli S. Cryopreservation of human ovarian tissue. Cell Tissue Bank. 2006; 7(2):123–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Shaw JM. Cryopreservation of oocytes and embryos. In: Trounson AO, Gardner DK, Eds. Handbook of in vitro fertilization. 2nd edn. Boca Raton: CRC Press LLC; 2000:373.Google Scholar
  44. 44.
    Gracia CR, Ginsberg JP. Fertility risk in pediatric and adolescent cancers. In: Woodruff TK, Snyder KA, Eds. Oncofertility: fertility preservation fro cancer survivors. New York: Springer; 2007:57–68.CrossRefGoogle Scholar
  45. 45.
    Ostensen M, Khamashta M, Lockshin M, Parke A, Brucato A, Carp H, Doria A, Rai R, Meroni P, Cetin I, Derksen R, Branch W, Motta M, Gordon C, Ruiz-Irastorza G, Spinillo A, Friedman D, Cimaz R, Czeizel A, Piette JC, Cervera R, Levy RA, Clementi M, De Carolis S, Petri M, Shoenfeld Y, Faden D, Valesini G, Tincani A. Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther. 2006; 8(3):209.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen SH, Wallach EE. Five decades of progress in management of the infertile couple. Fertil Steril. 1994; 62(4):665–85.PubMedGoogle Scholar
  47. 47.
    Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, Beck LN, Brennan LV, Oktay K. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006; 24(18):2917–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Medicine TECotASfR. Fertility preservation and reproduction in cancer patients. Report nr. 1556–5653 (Electronic). 2005:1622–8.Google Scholar
  49. 49.
    Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to –196 degrees and –269 degrees C. Science. 1972; 178(59):411–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilmut I. The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II. 1972; 11(22):1071–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978; 2(8085):366.PubMedCrossRefGoogle Scholar
  52. 52.
    Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf. 1985; 2(2):59–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Cohen J, Simons RF, Fehilly CB, Fishel SB, Edwards RG, Hewitt J, Rowlant GF, Steptoe PC, Webster JM. Birth after replacement of hatching blastocyst cryopreserved at expanded blastocyst stage. Lancet. 1985; 1(8429):647.PubMedCrossRefGoogle Scholar
  54. 54.
    Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983; 305(5936):707–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Services UDoHaH. Pregnancy success rates from frozen embryos from non-donor eggs. Assisted reproductive technology (ART). Atlanta: Center for Disease Control and Prevention; 2007.Google Scholar
  56. 56.
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007; 67(1):73–80.PubMedCrossRefGoogle Scholar
  57. 57.
    Stehlik E, Stehlik J, Katayama KP, Kuwayama M, Jambor V, Brohammer R, Kato O. Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod Biomed Online. 2005; 11(1):53–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Medicine TPCotASfR. Ovarian tissue and oocyte cryopreservation. Fertil Steril. 2004; 82(4):993–8.Google Scholar
  59. 59.
    Aigner S, Van der Elst J, Siebzehnrubl E, Wildt L, Lang N, Van Steirteghem AC. The influence of slow and ultra-rapid freezing on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1992; 7(6):857–64.PubMedGoogle Scholar
  60. 60.
    Gook DA, Osborn SM, Bourne H, Johnston WI. Fertilization of human oocytes following cryopreservation; normal karyotypes and absence of stray chromosomes. Hum Reprod. 1994; 9(4):684–91.PubMedGoogle Scholar
  61. 61.
    Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008; 89(6):1657–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006; 86(1):70–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, Buckett WM, Tulandi T, Tan SL. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009; 91(2):372–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, Buckett WM, Tulandi T, Tan SL. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009; 91(6):2391–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril. 2003; 80(1):223–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005; 11(3):300–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Nugent D, Meirow D, Brook PF, Aubard Y, Gosden RG. Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum Reprod Update. 1997; 3(3):267–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Donnez J, Bassil S. Indications for cryopreservation of ovarian tissue. Hum Reprod Update. 1998; 4(3):248–59.PubMedCrossRefGoogle Scholar
  69. 69.
    Meirow D. Ovarian injury and modern options to preserve fertility in female cancer patients treated with high dose radio-chemotherapy for hemato-oncological neoplasias and other cancers. Leuk Lymphoma. 1999; 33(1–2):65–76.PubMedGoogle Scholar
  70. 70.
    Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003; 18(6):1158–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Parrot DMV. The fertility of mice with orthotopic ovariam grafts derived from frozen tissue. J Reprod Fertil. 1960; 1:230–41.CrossRefGoogle Scholar
  72. 72.
    Sztein J, Sweet H, Farley J, Mobraaten L. Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol Reprod. 1998; 58(4):1071–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at –196 degrees C. Hum Reprod. 1994; 9(4):597–603.PubMedGoogle Scholar
  74. 74.
    Lee DM, Yeoman RR, Battaglia DE, Stouffer RL, Zelinski-Wooten MB, Fanton JW, Wolf DP. Live birth after ovarian tissue transplant. Nature. 2004; 428(6979):137–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Oktay K, Economos K, Kan M, Rucinski J, Veeck L, Rosenwaks Z. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA. 2001; 286(12):1490–3.PubMedCrossRefGoogle Scholar
  76. 76.
    Kiran G, Kiran H, Coban YK, Guven AM, Yuksel M. Fresh autologous transplantation of ovarian cortical strips to the anterior abdominal wall at the pfannenstiel incision site. Fertil Steril. 2004; 82(4):954–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004; 364(9443):1405–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005; 353(3):318–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Donnez J, Squifflet J, Van Eyck AS, Demylle D, Jadoul P, Van Langendonckt A, Dolmans MM. Restoration of ovarian function in orthotopically transplanted cryopreserved ovarian tissue: a pilot experience. Reprod Biomed Online. 2008; 16(5):694–704.PubMedCrossRefGoogle Scholar
  80. 80.
    Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996; 17(2):121–55.PubMedGoogle Scholar
  81. 81.
    Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, Schmidt KL, Andersen AN, Ernst E. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008; 23(10):2266–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Donnez J, Squifflet J, Dolmans MM, Martinez-Madrid B, Jadoul P, Van Langendonckt A. Orthotopic transplantation of fresh ovarian cortex: a report of two cases. Fertil Steril. 2005; 84(4):1018.PubMedCrossRefGoogle Scholar
  83. 83.
    Callejo J, Salvador C, Miralles A, Vilaseca S, Lailla JM, Balasch J Long-term ovarian function evaluation after autografting by implantation with fresh and frozen-thawed human ovarian tissue. J Clin Endocrinol Metab. 2001; 86(9):4489–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000; 342(25):1919.PubMedCrossRefGoogle Scholar
  85. 85.
    Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009; 15(6):649–65.PubMedCrossRefGoogle Scholar
  86. 86.
    Radford J. Autotransplantation of ovarian tissue and the risk of disease transmission. Eur J Obstet Gynecol Reprod Biol. 2004; 113(Suppl 1):S14–S16.Google Scholar
  87. 87.
    Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996; 11(8):1668–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Woods EJ, Benson JD, Agca Y, Critser JK. Fundamental cryobiology of reproductive cells and tissues. Cryobiology. 2004; 48(2):146–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Barrett SL, Shea LD, Woodruff TK. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol Reprod. 2010; 82(6):1180–1189.Google Scholar
  90. 90.
    Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, Donnez J. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod. 2006; 21(2):413–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005; 73(5):942–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Xu M, Woodruff TK, Shea LD. Bioengineering and the ovarian follicle. Cancer Treat Res. 2007; 138:75–82.PubMedCrossRefGoogle Scholar
  93. 93.
    Xu M, Banc A, Woodruff TK, Shea LD. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol Bioeng. 2009; 103(2):378–86.PubMedCrossRefGoogle Scholar
  94. 94.
    West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007; 28(30):4439–48.PubMedCrossRefGoogle Scholar
  95. 95.
    Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006; 12(10):2739–46.PubMedCrossRefGoogle Scholar
  96. 96.
    West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2008; 80(3):432–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008; 136(6):703–15.PubMedCrossRefGoogle Scholar
  98. 98.
    Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009; 81(3):587–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff TK. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009; 24(10):2531–2540.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Center for Reproductive Science, Northwestern UniversityEvanstonUSA
  3. 3.The Oncofertility Consortium, Northwestern UniversityChicagoUSA
  4. 4.Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations