Gene Reachability Using Page Ranking on Gene Co-expression Networks

  • Pinaki Sarder
  • Weixiong Zhang
  • J. Perren Cobb
  • Arye Nehorai


We modify the Google Page-Rank algorithm, which is primarily used for ranking web pages, to analyze the gene reachability in complex gene co-expression networks. Our modification is based on the average connections per gene. We propose a new method to compute the metric of average connections per gene, inspired by the Page-Rank algorithm. We calculate this average as eight for human genome data and three to seven for yeast genome data. Our algorithm provides clustering of genes. The proposed analogy between web pages and genes may offer a new way to interpret gene networks.


Ingenuity Pathway Analysis Gene Ranking Connectivity Information Average Connection Gene Connection 



The work of W. Zhang was supported by the NSF grants IIS-0535257 and DBI-0743797 and a grant from the Alzheimer’s Association. The work of J. P. Cobb was supported by the NIH grants R21GM075023 and R01GM59960.


  1. 1.
    S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine (, Proceedings of 7th Intlernational Conference of World Wide Web 7, pages 107–117, 1998.
  2. 2.
    J. Ruan and W. Zhang. Identification and evaluation of functional modules in gene co-expression networks, RECOMB Satellite Conferences on Systems Biology and Computational Proteomics, San Diego, CA, Dec. 2006.Google Scholar
  3. 3.
    J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. GeneRank: Using search engine technology for the analysis of microarray experiments, BMC Bioinformatics, 6:233, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    J. E. McDunn, K. D. Husain, A. D. Polpitiya, A. Burykin. J. Ruan, Q. Li, W. Schierding, N. Lin, D. Dixon, W. Zhang, C. M. Coopersmith, W. M. Dunne, M. Colonna, B. K. Ghosh, and J. P. Cobb. Plasticity of the systematic inflammatory response to acute infection during critical illness: Development of the riboleukogram, PLoS One, 3(2):e1564, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. C. Tseng. Evaluation and comparison of gene clustering methods in microarray analysis, Bioinformatics, 22(19):2405–2412, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, S. Lewis, E. Birney, and L. Stein. Reactome: A knowledgebase of biological pathways, Nucleic Acids Research, 33:D428–432, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    A. K. Ramani, R. C. Bunescu, R. J. Mooney, and E. M. Marcotte. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome, Genome Biologoy, 6(5):R40, 2005.CrossRefGoogle Scholar
  8. 8.
    G. T. Hart, A. K. Ramani, and E. M. Marcotte. How complete are current yeast and human protein-interaction networks? Genome Biologoy, 7:I20, 2006.CrossRefGoogle Scholar
  9. 9.
    R. Guimerà, S. Mossa, A. Turtschi, and L. A. Amaral. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles, Proceedings of the National Academy of Science, 102(22):7794–7799, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pinaki Sarder
    • 1
  • Weixiong Zhang
    • 2
  • J. Perren Cobb
    • 3
  • Arye Nehorai
    • 4
  1. 1.Department of Computer Science and EngineeringWashington University in St.LouisSt. LouisUSA
  2. 2.Departments of Computer Science and Engineering and GeneticsWashington University in St. LouisSt. LouisUSA
  3. 3.Department of Anesthesia, Critical Care, and Pain MedicineMassachusetts General HospitalBostonUSA
  4. 4.Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations