Supply Chain Models

  • Marc Goetschalckx
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 161)


After you have studied this chapter, you should be able to
  • Know the characteristics of the major types of objectives for strategic models

  • Know the tactical supply chain planning model

  • Know how characteristics and differences between arc-based and path-based supply chain models

  • Know the warehouse location model (WLP), the Geoffrion & Graves (G&G), and the multi-echelon strategic planning models

  • Know the site relative cost factor and how to apply it


Supply Chain Transportation Mode Supply Chain Design Supply Chain Model Supply Chain Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Benders, P. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.CrossRefGoogle Scholar
  2. Canel, C., & Khumawala, B. M. (1997). Multi-period international facilities location: An algorithm and application. International Journal of Production Research, 35(7), 1891–1910.CrossRefGoogle Scholar
  3. Cohen, M. A., & Huchzermeier, A. (1999). Global supply chain management: A survey of research and applications. In S. Tayur et al. (Eds.), Quantitative models for supply chain management (pp. 669–702). Boston: Kluwer.Google Scholar
  4. Cohen, M. A., & Lee, H. L. (1985). Manufacturing strategy: Concepts and methods. In P. R. Kleindorfer (Ed.), The management of productivity and technology in manufacturing (pp. 153–188). New York: Plenum Press.Google Scholar
  5. Cohen, M. A., & Lee, H. L. (1988). Strategic analysis of integrated production-distribution systems: Models and methods. Operations Research, 36(2), 216–228.CrossRefGoogle Scholar
  6. Cohen, M. A., & Lee, H. L. (1989). Resource deployment analysis of global manufacturing and distribution networks. Journal of Manufacturing Operations Management, 2, 81–104.Google Scholar
  7. Cohen, M. A., & Moon, S. (1991). An integrated plant loading model with economies of scale and scope. European Journal of Operational Research, 50(3), 266–279.CrossRefGoogle Scholar
  8. Cohen, M. A., & Kleindorfer, P. R. (1993). Creating value through operations: The legacy of Elwood S. Buffa. In R. K. Sarin (Ed.), Perspectives in operations management (Essays in honor of Elwood S. Buffa) (pp. 3–21). Boston: Kluwer.CrossRefGoogle Scholar
  9. Cohen, M. A., Fisher, M., & Jaikumar, R. (1989). International manufacturing and distribution networks: A normative model framework. In K. Ferdows (Ed.), Managing International Manufacturing (pp. 67–93). Amsterdam: North-Holland.Google Scholar
  10. Dogan, K., & Goetschalckx, M. (1999). A primal decomposition method for the integrated design of multi-period production-distribution systems. IIE Transactions, 31(11), 1027–1036.Google Scholar
  11. Drezner, Z. (1995). Facility location: A survey of applications and methods. New York: Springer.Google Scholar
  12. Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations Research, 26(6), 992–1009.CrossRefGoogle Scholar
  13. Feldman, E., Lehrer, F. A., & Ray, T. L. (1966). Warehouse location under continuous economies of scale. Management Science, 12, 670–684.CrossRefGoogle Scholar
  14. Fisher M. L. (1985). An applications oriented guide to lagrangian relaxation. Interfaces, 15(2), 10–21.CrossRefGoogle Scholar
  15. Francis, R. L., McGinnis, L. F., & White, J. A. (1992). Facility layout and location: An analytical approach (2nd ed.). Englewood Cliffs: Prentice-Hall.Google Scholar
  16. Friedenthal, S., Moore, A., & Steiner, R. (2008). A Practical Guide to SysML. Amsterdam: Morgan Kaufman OMG.Google Scholar
  17. Geoffrion A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20(5), 822–844.CrossRefGoogle Scholar
  18. Geoffrion A. M., & McBride. (1978). Lagreangean relaxation applied to capacitated facility location problems. Operations Research, 10(1), 40–47.Google Scholar
  19. Geoffrion, A. M., & Powers, R. F. (1995). 20 years of strategic distribution system design: An evolutionary perspective. Interfaces, 25(5), 105–127.CrossRefGoogle Scholar
  20. Geoffrion, A. M., & Powers, R. F. (1980). Facility location analysis is just the beginning (if you do it right). Interfaces, 10/2, 22–30.CrossRefGoogle Scholar
  21. Geoffrion, A. M., Graves, G. W., & Lee, S. J. (1982). A management support system for distribution planning. INFOR 20, 4, 287–314.Google Scholar
  22. Geoffrion, A. M., Graves, G. W., & Lee, S. J. (1978). Strategic distribution system planning: A status report. In A. C. Hax (Ed.), Studies in operations management (pp. 179–204). Amsterdam: North-Holland.Google Scholar
  23. Geoffrion, A. M., Morris, J. G., & Webster, S. T. (1995). Distribution system design. In Z. Drezner (Ed.), Facility location: A survey of applications and methods. New York: Springer.Google Scholar
  24. Goetschalckx, M. (2000). Strategic network planning. In H. Stadtler & C. Kilger (Eds.), Supply chain management and advanced planning. Heidelberg: Springer.Google Scholar
  25. Goetschalckx, M., Nemhauser, G., Cole, M. H., Wei, R. Dogan, K., & Zang, X. (1994). Computer aided design of industrial logistic systems. In Proceedings of the Third Triennial Symposium on Transportation Analysis (TRISTAN III), Capri, Italy, pp. 151–178.Google Scholar
  26. Kuehn, A. A., & Hamburger, M. J. (1963). A heuristic program for locating warehouses. Management Science, 9, 643–666.CrossRefGoogle Scholar
  27. Lasdon, L. S. (1970). Optimization theory for large systems. New York: McMillan.Google Scholar
  28. Lee, C. (1991). An optimal algorithm for the multiproduct capacitated facility location problem with a choice of facility type. Computers and Operational Research, 18(2), 167–182.CrossRefGoogle Scholar
  29. Lee, C. (1993). A cross decomposition algorithm for a multiproduct-multitype facility location problem. Computers and Operational Research, 20(5), 527–540.CrossRefGoogle Scholar
  30. Love R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location. New York: Elsevier.Google Scholar
  31. Mirchandani, P. B., & Francis, R. L. (1990). Discrete location theory. New York: Wiley.Google Scholar
  32. Moon, S. (1989). Application of generalized Benders decomposition to a nonlinear distribution system design problem. Naval Research Logistics, 36, 283–295.CrossRefGoogle Scholar
  33. Nemhauser G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.Google Scholar
  34. Park, C. S., & Sharp, G. P. (1990). Advanced engineering economics. New York: Wiley.Google Scholar
  35. Rohde, J., & Wagner, M. (2008). Master planning. In H. Stadtler & C. Kilger (Eds.), Supply chain management and advanced planning (4th ed., pp. 161–180). Berlin: Springer.Google Scholar
  36. Schmidt, G., & Wilhelm, W. E. (2000). Strategic, tactical, and operational decisions in multi-national logistics networks: A review and discussion of modeling issues. International Journal of Production Research, 38(7), 1501–1523.CrossRefGoogle Scholar
  37. Schrage, L. (1986). Linear, integer, and quadratic programming with LINDO. Palo Alto: The Scientific Press.Google Scholar
  38. Stadtler, H., & Kilger, C. (2008). Supply chain management and advanced planning. Berlin: Springer.CrossRefGoogle Scholar
  39. Tayur, S., Ganeshan, R., & Magazine, M. (Eds). (1999). Quantitative models for supply chain management. Boston: Kluwer.Google Scholar
  40. Thomas, D., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94, 1–15.CrossRefGoogle Scholar
  41. Van Roy, T. J., & Erlenkotter, D. (1982). A dual-based procedure for dynamic facility location. Management Science, 28, 1091–1105.CrossRefGoogle Scholar
  42. Van Roy, T. (1983). Cross decomposition for mixed integer programming. Mathematical Programming, 25, 46–63.CrossRefGoogle Scholar
  43. Van Roy, T. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research, 34(1), 145–163.CrossRefGoogle Scholar
  44. Verter, V., & Dasci, A. (2001). The plant location and flexible technology acquisition problem. European Journal of Operational Research, (to appear).Google Scholar
  45. Vidal, C., & Goetschalckx, M. (1996). The role and limitations of quantitative techniques in the strategic design of global logistics systems. CIBER Research Report 96-023, Georgia Institute of Technology. Accepted for publication in the special issue on Manufacturing in a Global Economy of the Journal of Technology Forecasting and Social Change.Google Scholar
  46. Vidal, C., & Goetschalckx, M. (1997). Strategic production-distribution models: a critical review with emphasis on global supply chain models. European Journal of Operational Research, 98, 1–18.CrossRefGoogle Scholar
  47. Vidal, C., & Goetschalckx, M. (2000). Modeling the Impact of Uncertainties on Global Logistics Systems. Journal of Business Logistics, 21(1), 95–120.Google Scholar
  48. Vidal C., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. European Journal of Operational Research, 129(1), 134–158.CrossRefGoogle Scholar
  49. Whitaker, R. A. (1985). Some Add-Drop and Drop-Add interchange heuristics for non-linear warehouse location. Journal of Operational Research Society, 36, 61–70.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.H. Milton Stewart School of Industrial & Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations