The Sclera pp 57-93 | Cite as

Diagnostic Approach of Episcleritis and Scleritis

  • Maite Sainz de la Maza
  • Joseph Tauber
  • C. Stephen Foster


The approach to the patient with scleritis should include five phases. The first phase includes the investigation of the illness through the interview and physical examination of the patient. The second phase consists of the selection of blood, urine, and imaging studies that are needed to investigate the possibilities raised in the first phase. In the third phase, the decision is made as to whether a tissue biopsy is likely to add useful information to the diagnosis or to the therapy. The fourth phase integrates the clinical findings with tests and biopsy results, leading to a specific diagnosis. In the fifth phase, a therapeutic plan is initiated and the response is observed.


Herpes Zoster Purify Protein Derivative Reactive Arthritis Relapse Polychondritis Scleral Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Watson PG, Hayreh SS. Scleritis and episcleritis. Br J Ophthalmol. 1976;60:163.PubMedCrossRefGoogle Scholar
  2. 2.
    Spencer WH. Sclera. In: Spencer WH, editor. Ophthalmic pathology. 3rd ed. Philadelphia, PA: WB Saunders Company; 1985. p. 389–422.Google Scholar
  3. 3.
    Waaler E. On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta Pathol Microbiol Scand. 1940;17:172.CrossRefGoogle Scholar
  4. 4.
    Rose HM, Ragan C, Pearce E, et al. Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc Soc Exp Biol Med. 1948;68:1.PubMedGoogle Scholar
  5. 5.
    Carson DA. Rheumatoid factor. In: Kelley WN, Harris Jr ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. 3rd ed. Philadelphia, PA: W. B Saunders Company; 1989.Google Scholar
  6. 6.
    Dresner E, Trombly P. The latex-fixation reaction in nonrheumatic diseases. N Engl J Med. 1959;261:981.PubMedCrossRefGoogle Scholar
  7. 7.
    Howell DS, Malcolm JM, Pike H. The FII agglutinating factors in the serum of patients with nonrheumatic diseases. Am J Med. 1960;29:662.PubMedCrossRefGoogle Scholar
  8. 8.
    Kunkel HG, Simon HJ, Fudenberg H. Observations concerning positive serologic reactions for rheumatoid factor in certain patients with sarcoidosis and other hyperglobulinemic states. Arthritis Rheum. 1958;1:289.PubMedCrossRefGoogle Scholar
  9. 9.
    Aho K, Palosuo T, Raunio V, et al. When does rheumatoid disease start? Arthritis Rheum. 1985;28:485.PubMedCrossRefGoogle Scholar
  10. 10.
    Ball J, Lawrence JS. The relationship of rheumatoid serum factor to rheumatoid arthritis. Ann Rheum Dis. 1963;22:311.PubMedCrossRefGoogle Scholar
  11. 11.
    Del Puente A, Knowler WC, Pettit DJ, et al. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum. 1988;31:1239.PubMedCrossRefGoogle Scholar
  12. 12.
    Bland JH, Brown EW. Seronegative and seropositive rheumatoid arthritis. Clinical, radiological, and biochemical differences. Ann Intern Med. 1964;60:88.PubMedGoogle Scholar
  13. 13.
    Mongan ES, Cass RM, Jacox RF, et al. A study of the relation of seronegative and seropositive rheumatoid arthritis to each other and to necrotizing vasculitis. Am J Med. 1969;47:33.CrossRefGoogle Scholar
  14. 14.
    Sharp JT, Calkins E, Cohen AS, et al. Observations on the clinical, chemical, and serological manifestations of rheumatoid arthritis based on the course of 154 cases. Medicine. 1964;43:41.PubMedCrossRefGoogle Scholar
  15. 15.
    Sievers K. The rheumatoid factor in definite rheumatoid arthritis: an analysis of 1279 adult patients, with a follow-up study. Acta Rheum Scand Suppl. 1965;9:1.Google Scholar
  16. 16.
    Koopman WJ, Schrohenloher RE. Rheumatoid factor. In: Utsinger PD, Zvaifler NJ, Ehrlich GE, editors. Rheumatoid arthritis. Philadelphia, PA: JB Lippincott Company; 1985. p. 217–41.Google Scholar
  17. 17.
    Koopman WJ, Schrohenloher RE. A sensitive radioimmunoassay for quantitation of IgM rheumatoid factor. Arthritis Rheum. 1980;23:302.PubMedCrossRefGoogle Scholar
  18. 18.
    Koopman WJ, Schrohenloher RE, Solomon A. A quantitative assay for IgA rheumatoid factor. J Immunol Methods. 1982;50:89.PubMedCrossRefGoogle Scholar
  19. 19.
    Hay FC, Nineham LJ, Roitt IM. Routine assay for detection of IgG and IgM antiglobulins in seronegative and seropositive rheumatoid arthritis. Br Med J. 1975;3:203.PubMedCrossRefGoogle Scholar
  20. 20.
    Wernick R, LoSpalluto JJ, Fink CW, et al. Serum IgG and IgM rheumatoid factors by solid phase radioimmunoassay: a comparison between adult and juvenile rheumatoid arthritis. Arthritis Rheum. 1981;24:1501.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146:797.PubMedGoogle Scholar
  22. 22.
    Markatseli TE, Voulgari PV, Alamanos Y, et al. Prognostic factors of radiological damage in rheumatoid arthritis: a ten year retrospective study. J Rheumatol. 2011;38:44.PubMedCrossRefGoogle Scholar
  23. 23.
    Hardgraves MM, Richmond H, Morton R. Presentation of two bone marrow elements: the “tart” cell and “LE” cell. Proc Staff Meet Mayo Clin. 1948;23:25.Google Scholar
  24. 24.
    Haserick JR, Sunderberg RD. The bone marrow as a diagnosis aid in acute disseminated lupus erythematosus. J Invest Dermatol. 1948;11:209.PubMedGoogle Scholar
  25. 25.
    Friou GJ. Clinical application of lupus serum-­nucleoprotein reaction using fluorescent antibody technique. J Clin Invest. 1957;36:890.Google Scholar
  26. 26.
    Holman HR, Kunkel HG. Affinity between the lupus erythematosus serum factor and cell nuclei and nucleoprotein. Science. 1957;126:162.PubMedCrossRefGoogle Scholar
  27. 27.
    Holborow EJ, Weir DM, Johnson GD. A serum factor in lupus erythematosus with affinity for tissue nuclei. Br Med J. 1957;2:732.PubMedCrossRefGoogle Scholar
  28. 28.
    Fries JF. Systemic lupus erythematosus: a clinical analysis. Philadelphia, PA: WB Saunders Company; 1975.Google Scholar
  29. 29.
    Reichlin M. Antinuclear antibodies. In: Kelley WN, Harris ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. 3rd ed. Philadelphia, PA: W.B. Saunders Company; 1989.Google Scholar
  30. 30.
    Notman DD, Kurata N, Tan EM. Profiles of antinuclear antibodies in systemic rheumatic disease. Ann Intern Med. 1975;83:464.PubMedGoogle Scholar
  31. 31.
    Ballou SP, Kushner I. Anti-native DNA detection by the crithidia luciliae method: an improved guide to the diagnosis and management of systemic lupus erythematosus. Arthritis Rheum. 1979;22:321.PubMedCrossRefGoogle Scholar
  32. 32.
    Munves EF, Schur PH. Antibodies to Sm and RNP: prognosticators of disease involvement. Arthritis Rheum. 1983;26:848.PubMedCrossRefGoogle Scholar
  33. 33.
    Tan EM, Rodman GP, Garcia I, et al. Diversity of antinuclear antibodies in progressive systemic sclerosis. Arthritis Rheum. 1980;23:617.PubMedCrossRefGoogle Scholar
  34. 34.
    Fritzler MJ, Kinsella TD, Garbutt E. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med. 1980;65:520.CrossRefGoogle Scholar
  35. 35.
    Bresnihan B, Bunn C, Snaith ML, et al. Antiri­bonucleoprotein antibodies in connective tissue diseases: examination by counterimmunoelectrophoresis. Br J Med. 1977;1:610.CrossRefGoogle Scholar
  36. 36.
    Huo AP, Lin KC, Chou CT. Predictive and prognostic value of antinuclear antibodies and rheumatoid factor in primary Sjögren´s syndrome. Int J Rheum Dis. 2011;13:39.CrossRefGoogle Scholar
  37. 37.
    van der Woude FJ, Rasmussen N, Lobatto S, et al. Autoantibodies against neutrophils and monocytes; tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet. 1985;1:425.PubMedCrossRefGoogle Scholar
  38. 38.
    Ludemann G, Gross WL. Autoantibodies against cytoplasmic structures of neutrophil granulocytes in Wegener’s granulomatosis. Clin Exp Immunol. 1987;69:350.PubMedGoogle Scholar
  39. 39.
    Bruner BF, Vista ES, Wynn DM, et al. antineutrophil cytoplasmic antibodies target sequential functional proteinase 3 epitopes in the sera of patients with Wegener´s granulomatosis. Clin Exp Immunol. 2010;162:262.PubMedCrossRefGoogle Scholar
  40. 40.
    Nölle B, Specks U, Lüdemann J, et al. Anticytoplasmic autoantibodies: their immunodiagnostic value in Wegener’s granulomatosis. Ann Intern Med. 1989;111:28.PubMedGoogle Scholar
  41. 41.
    Falk RJ, Jennette JC. Antineutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Eng J Med. 1988;318:1651.CrossRefGoogle Scholar
  42. 42.
    Bullen CL, Liesegang TJ, McDonald TJ, DeRemee RA. Ocular complications of Wegener’s granulomatosis. Ophthalmology. 1983;90:279.PubMedGoogle Scholar
  43. 43.
    Jennette JC, Wilkman AS, Falk RJ. Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am J Pathol. 1989;135:921.PubMedGoogle Scholar
  44. 44.
    Levy-Clarke G, Ding X, Gangaputra S, et al. Recalcitrant granulomatous sclerouveitis in a patient with granulomatous ANCA-associated vasculitis. Ocul Immunol Inflamm. 2009;17:83.PubMedCrossRefGoogle Scholar
  45. 45.
    Soukiasian SH, Foster CS, Niles JL, Raizman MB. Diagnostic value of anti-neutrophil cytoplasmic antibodies (ANCA) in scleritis associated with Wegener’s granulomatosis. Ophthalmology. 1992;99(1):125.PubMedGoogle Scholar
  46. 46.
    Cochrane C, Hawkins D. Studies on circulating immune complexes. III Factors governing the ability of circulating complexes to localize in blood vessels. J Exp Med. 1968;127:137.PubMedCrossRefGoogle Scholar
  47. 47.
    Nydegger UE, Kazatchkine MD, Lambert PH. Immune complexes. In: Fougereau M, Dausset J, editors. Progress in immunology IV. Paris: Academic; 1980.Google Scholar
  48. 48.
    Jones VE, Jacoby RK, Wallington T, Holt P. Immune complexes in early arthritis. I. Detection of immune complexes before rheumatoid arthritis is definite. Clin Exp Immunol. 1981;44:512.PubMedGoogle Scholar
  49. 49.
    Zubler RH, Nydegger UE, Perrin LH, et al. Circulating and intraarticular immune complexes in patients with rheumatoid arthritis. J Clin Invest. 1976;57:1308.PubMedCrossRefGoogle Scholar
  50. 50.
    Gabay R, Zubler RH, Nydegger UE, et al. Immune complexes and complement catabolism in ankylosing spondylitis. Arthritis Rheum. 1977;20:913.PubMedCrossRefGoogle Scholar
  51. 51.
    Lessard J, Nunnery E, Cecere F, et al. Relationship between the articular manifestations of rheumatoid arthritis and circulating immune complexes detected by three methods and specific classes of rheumatoid factors. J Rheumatol. 1983;10:411.PubMedGoogle Scholar
  52. 52.
    Hamburger MI, Lawley TJ, Kimberley RP, et al. A serial study of systemic reticuloendothelial system Fc receptor functional activity in systemic lupus erythematosus. Arthritis Rheum. 1982;25:1.CrossRefGoogle Scholar
  53. 53.
    Lloyd W, Schur PH. Immune complexes, complement, and antiDNA in exacerbations of systemic lupus erythematosus (SLE). Medicine. 1981;60:208.PubMedCrossRefGoogle Scholar
  54. 54.
    Scott DG, Bacon PA, Tribe CR. Systemic rheumatoid vasculitis: a clinical and laboratory study of 50 cases. Medicine (Baltimore). 1981;60(4):288.Google Scholar
  55. 55.
    Zubler RH, Lange G, Lambert PH, et al. Detection of immune complexes in unheated sera by a modified 125I-C1q binding test effect of heating on the binding of C1q by immune complexes and application of the test to systemic lupus erythematosus. J Immunol. 1976;116:232.PubMedGoogle Scholar
  56. 56.
    Theofilopoulos AN, Wilson CB, Dixon FJ. The Raji cell radioimmune assay for detecting immune complexes in human sera. J Clin Invest. 1976;57:169.PubMedCrossRefGoogle Scholar
  57. 57.
    Hugli TE. The structural basis for anaphylatoxin and chemotactic function of C3a, C4a, and C5a. CRC Crit Rev Immunol. 1981;2:321.Google Scholar
  58. 58.
    Hugli TE, Muller-Eberhard HJ. Anaphylatoxins: C3a and C5a. Adv Immunol. 1987;26:1.CrossRefGoogle Scholar
  59. 59.
    Scott DGI, Bacon PA, Allen C. et al:IgG rheumatoid factor, complement, and immune complexes in rheumatoid synovitis and vasculitis: Comparative and serial studies during cytotoxic therapy. Clin Exp Immunol. 1981;43:54.PubMedGoogle Scholar
  60. 60.
    Hunder GG, McDuffie FC. Hypocomplementinemia in rheumatoid arthritis. Am J Med. 1973;54:461.PubMedCrossRefGoogle Scholar
  61. 61.
    Shur PH. Complement studies of sera and other biologic fluids. Hum Pathol. 1983;14:338.CrossRefGoogle Scholar
  62. 62.
    Ruddy S, Everson LK, Shur PH, et al. Hemolytic assay of the ninth complement component: elevation and depletion in rheumatic diseases. J Exp Med. 1971;134:259S.PubMedGoogle Scholar
  63. 63.
    Ruddy S, Carpenter CB, Müller-Eberhard HJ, et al (1968) Complement component levels in hereditary angioneurotic edema and isolated C’2 deficiency in man. In: Miescher PA, Grabar P (eds.), Mechanisms of Inflammation Induced by Immune Reactions. Vth International Immunopathology Symposium. Basel, Schwabe, and Company p. 231.Google Scholar
  64. 64.
    Mayer MM. Complement and complement fixation. In: Kabat EA, Mayer MM, editors. Experimental Immunochemistry. Springfield, MA: Charles C Thomas; 1961. p. 133.Google Scholar
  65. 65.
    Calin A. HLA-B27: To type or not to type? Ann Intern Med. 1980;92:208.PubMedGoogle Scholar
  66. 66.
    Calin A. HLA-B27 in 1982. Reappraisal of a clinical test. Ann Intern Med. 1982;96:114.PubMedGoogle Scholar
  67. 67.
    Vastesaeger N, van der Heijde D, Inman RD, et al. Predicting the outcome of ankylosing spondylitis therapy. Ann Rheum Dis. 2011;70(6):973–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Holmes KK, Lukehart SA. Syphilis. In: Braunwald E, Isselbacher KJ, Petersdorf RG, et al., editors. Harrison’s Principles of internal medicine, vol. 1. 11th ed. New York, NY: McGraw-Hill; 1987. p. 639–49.Google Scholar
  69. 69.
    Spoor TC, Wynn P, Hartel WC, et al. Ocular syphilis: acute and chronic. J Clin Neuro Ophthalmol. 1983;3:197.Google Scholar
  70. 70.
    Harner RE, Smith JL, Israel CW. The FTA-ABS in late syphilis. A serological study in 1,985 cases. JAMA. 1968;203:545.PubMedCrossRefGoogle Scholar
  71. 71.
    Hart G. Syphilis tests in diagnostic and therapeutic decision making. Ann Intern Med. 1986;104:368.PubMedGoogle Scholar
  72. 72.
    Lesser RL, Kornmehl EW, Pachner AR, et al. Neuro- ophthalmologic manifestations of Lyme disease. Ophthalmology. 1990;97:699.PubMedGoogle Scholar
  73. 73.
    Harper DR, Grose C. IgM and IgG responses to varicella-zoster virus p32/p36 complex after chickenpox and zoster, congenital and subclinical infectios, and vaccination. J Infect Dis. 1989;159:444.PubMedCrossRefGoogle Scholar
  74. 74.
    Schluger NW, Burzynski J. Recent advances in testing for latent TB. Chest Dec. 2010;138:1456.CrossRefGoogle Scholar
  75. 75.
    Diel R, Goleti D, Ferrara G, et al. Interferon-γ release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J. 2011;37:88.PubMedCrossRefGoogle Scholar
  76. 76.
    Cordero-Coma M, Calleja S, Torres HE, et al. The value of an immune response to Mycobacterium tuberculosis in patients with chronic posterior uveitides revisited: utility of the new IGRAS. Eye. 2010;24:36.PubMedCrossRefGoogle Scholar
  77. 77.
    Itty S, Bakri SJ, Pulido JS, et al. Initial results of QuantiFERON-TB Gold testing in patients with uveitis. Eye. 2009;23:904.PubMedCrossRefGoogle Scholar
  78. 78.
    Ball PM, Pernollet M, Bouillet L, et al. Usefulness of an in-vitro tuberculosis interferon-g release assay (T-SPOT.TB) in the first-line check-up of uveitis patients. Ann Med. 2010;42:546.PubMedCrossRefGoogle Scholar
  79. 79.
    Rothova A, de Boer JH, Ten Dam-van Loon NH, et al. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115:306.PubMedCrossRefGoogle Scholar
  80. 80.
    Jones HE, Miller SD, Greenburg HH. Measurement of tuberculin reactions. N Engl J Med. 1972;287:721.PubMedGoogle Scholar
  81. 81.
    Watson PG, Bovey E. Anterior segment fluorescein angiography in the diagnosis of scleral inflammation. Ophthalmology. 1985;92:1.PubMedGoogle Scholar
  82. 82.
    Lemarinel B, Gabison E, Doan S, et al. Anterior-segment indocyanine green angiography in the management of anterior scleritis. J Fr Ophthalmol. 2008;31:495.CrossRefGoogle Scholar
  83. 83.
    Watson PG, Booth-Mason S. Fluorescein angiography in the differential diagnosis of sclerokeratitis. Br J Ophthalmol. 1987;71:145.PubMedCrossRefGoogle Scholar
  84. 84.
    Bron AJ, Easty DL. Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK. 1970;90:339.PubMedGoogle Scholar
  85. 85.
    Watson PG. Anterior segment fluorescein angiography in the surgery of immunologically induced corneal and scleral destructive disorders. Ophthalmology. 1987;94:1452.PubMedGoogle Scholar
  86. 86.
    Raizman MB, Sainz de la Maza M, Foster CS. Tectonic keratoplasty for peripheral ulcerative keratitis. Cornea. 1991;10(4):312.PubMedCrossRefGoogle Scholar
  87. 87.
    Amalric P, Rebière P, Jourdes JC. Nouvelles indications de l’angiographie fluoresceinique du segment anterieur de l’oeil. Ann Ocul. 1971;204:455.Google Scholar
  88. 88.
    Ikegami M. Fluorescein angiography of the anterior ocular segment. Part 1. Hemodynamics in the anterior ciliary vessels. Nippon Ganka Gakkai Zasshi. 1974;78:371.PubMedGoogle Scholar
  89. 89.
    Matsui M, Justice Jr J. Anterior segment fluorescein angiography. Int Ophthalmol Clin. 1976;16:189.PubMedGoogle Scholar
  90. 90.
    Kottow MH. Anterior segment fluorescein angiography. Baltimore: Williams & Wilkins; 1978.Google Scholar
  91. 91.
    Saari KM. Anterior segment fluorescein angiography in inflammatory diseases of the cornea. Acta Ophthalmol. 1979;57:781.Google Scholar
  92. 92.
    Marsh RJ, Ford SM. Blood flow in the anterior segment of the eye. Trans Ophthalmol Soc UK. 1980;100:388.PubMedGoogle Scholar
  93. 93.
    Talusan ED, Schwartz B. Fluorescein angiography: demonstration of flow pattern of anterior ciliary arteries. Arch Ophthalmol. 1981;99:1074.PubMedCrossRefGoogle Scholar
  94. 94.
    Meyer PA, Watson PG. Low dose fluorescein angiography of the conjunctiva and episclera. Br J Ophthalmol. 1987;71:2.PubMedCrossRefGoogle Scholar
  95. 95.
    Meyer PA. Pattern of blood flow in episcleral vessels studied by low-dose fluorescein videoangiography. Eye. 1988;2:533.PubMedCrossRefGoogle Scholar
  96. 96.
    Ormerod LD, Fariza E, Hughes GW, Doane MG, Webb RH. Anterior segment fluorescein videoangiography with a scanning angiographic microscope. Ophthalmology. 1990;97:745.PubMedGoogle Scholar
  97. 97.
    Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82.PubMedGoogle Scholar
  98. 98.
    Ashton N. The blood retinal barrier and vaso-glial relationship in retinal disease. Trans Ophthalmol Soc UK. 1965;85:199.PubMedGoogle Scholar
  99. 99.
    Jensen VA, Lundback K. Fluorescence angiography of the iris in recent and long-term diabetes: preliminary communication (XVII Scandinavian Ophthalmological Congress, Copenhagen 1967). Acta Ophthalmol (Copenh). 1968;46:584.CrossRefGoogle Scholar
  100. 100.
    Cobb B. Vascular tufts at the pupillary margin. Trans Ophthalmol Soc UK. 1968;88:211.Google Scholar
  101. 101.
    Raviola G. Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci. 1983;24:725.PubMedGoogle Scholar
  102. 102.
    Iwamoto T, Smelser GK. Electron microscopic studies of corneal capillaries. Invest Ophthalmol Vis Sci. 1965;4:815.Google Scholar
  103. 103.
    Rabkin MD, Bellhorn MB, Bellhorn R. Selected molecular weight dextrans for in vivo permeability studies of rat retinal vascular disease. Exp Eye Res. 1977;24:607.PubMedCrossRefGoogle Scholar
  104. 104.
    Bellhorn R. Permeability of blood-ocular barriers of neonatal and adult cats to fluorescein-labelled dextrans of selected molecular size. Invest Ophthalmol Vis Sci. 1981;21:282.PubMedGoogle Scholar
  105. 105.
    Lightman SL, Caspers-Velu LE, Hirose S, Nussenblatt RB, Palestine AG. Angiography with fluorescein-labeled dextrans in a primate model of uveitis. Arch Ophthalmol. 1987;105:844.PubMedCrossRefGoogle Scholar
  106. 106.
    Palestine AG, Brubaker RF. Plasma binding of fluorescein in normal subjects and in diabetic patients. Arch Ophthalmol. 1982;100:1160.PubMedCrossRefGoogle Scholar
  107. 107.
    Meyer PA, Fitzke FW. Computer assisted analysis of fluorescein videoangiograms. Br J Ophthalmol. 1990;74:275.PubMedCrossRefGoogle Scholar
  108. 108.
    Leber T. Die cirkulations-und Ernährungs­verhältnisse des Auges. In: Saemisch T, editor. Graefe-Saemisch Handbuch der Gesamten Augenheilkunde. 2nd ed. Leipzig: Wilhelm Engelmann; 1903.Google Scholar
  109. 109.
    Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Br J Ophthalmol. 1951;35:291.PubMedCrossRefGoogle Scholar
  110. 110.
    Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part II: aqueous veins. Br J Ophthalmol. 1952;36:265.PubMedCrossRefGoogle Scholar
  111. 111.
    Morrison JC, Van Buskirk EM. Anterior collateral circulation in the primate eye. Ophthalmology. 1983;90:707.PubMedGoogle Scholar
  112. 112.
    Brancato R, Frosini R, Boshi M. L’Angiografia superficiale a fluorescein del bulbo oculare. Ann Ottal Clin Ocul. 1969;95:433.Google Scholar
  113. 113.
    Laatikainen L. Perilimbal vasculature in glaucomatous eyes. Acta Ophthalmol. 1971;111(suppl):54.Google Scholar
  114. 114.
    Raitta C, Vannas S. Fluorescein angiographic features of the limbus and perilimbal vessels. Ear Nose Throat J. 1971;50:58.Google Scholar
  115. 115.
    Shimizu K, Ujie K. Structure of ocular vessels. Tokyo: Igaku-Shoin; 1978.Google Scholar
  116. 116.
    Bron AJ, Easty DL. Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK. 1970;90:339.PubMedGoogle Scholar
  117. 117.
    Smith ME, Haik BG, Coleman DJ. Diagnostic ocular ultrasonography. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York, NY: Springer; 1990. p. 47–60.CrossRefGoogle Scholar
  118. 118.
    Benson WE, Shields JA, Tasman W, Crandall AS. Posterior scleritis. A cause of diagnostic confusion. Arch Ophthalmol. 1979;97:1482.PubMedCrossRefGoogle Scholar
  119. 119.
    Benson WE. Posterior scleritis. Surv Ophthalmol. 1988;32:297.PubMedCrossRefGoogle Scholar
  120. 120.
    Cappaert WE, Purnell EW, Frank KE. Use of B-sector scan ultrasound in the diagnosis of benign choroidal folds. Am J Ophthalmol. 1977;84:375.PubMedGoogle Scholar
  121. 121.
    Rochels R, Reis G. Echography in posterior scleritis. Klin Monatsbl Augenheilkd. 1980;177:611.PubMedCrossRefGoogle Scholar
  122. 122.
    Taveras JL, Haik BG. Magnetic resonance imaging in ophthalmology. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York, NY: Springer; 1990. p. 32–46.CrossRefGoogle Scholar
  123. 123.
    Mauriello JA, Flanagan JC. Management of orbital inflammatory disease. A protocol. Surv Ophthalmol. 1984;29:104.PubMedCrossRefGoogle Scholar
  124. 124.
    Trokel SL, Hilal SK. Submillimeter resolution CT scanning of orbital diseases. Ophthalmology. 1980;87:412.PubMedGoogle Scholar
  125. 125.
    Trokel SL. Computed tomographic scanning of orbital inflammations. Int Ophthalmol Clin. 1982;22:81.PubMedCrossRefGoogle Scholar
  126. 126.
    Fong LP, Sainz de la Maza M, Rice BA, et al. Immunop­athology of scleritis. Ophthalmology. 1991;98:472.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maite Sainz de la Maza
    • 1
  • Joseph Tauber
    • 2
  • C. Stephen Foster
    • 3
  1. 1.Clinical Institute of OphthalmologyHospital Clinic of BarcelonaBarcelonaSpain
  2. 2.Tauber Eye CenterKansas CityUSA
  3. 3.Massachusetts Eye Research and Surgery InstitutionCambridgeUSA

Personalised recommendations