Skip to main content

Diagnostic Approach of Episcleritis and Scleritis

  • Chapter
  • First Online:
The Sclera

Abstract

The approach to the patient with scleritis should include five phases. The first phase includes the investigation of the illness through the interview and physical examination of the patient. The second phase consists of the selection of blood, urine, and imaging studies that are needed to investigate the possibilities raised in the first phase. In the third phase, the decision is made as to whether a tissue biopsy is likely to add useful information to the diagnosis or to the therapy. The fourth phase integrates the clinical findings with tests and biopsy results, leading to a specific diagnosis. In the fifth phase, a therapeutic plan is initiated and the response is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson PG, Hayreh SS. Scleritis and episcleritis. Br J Ophthalmol. 1976;60:163.

    Article  PubMed  CAS  Google Scholar 

  2. Spencer WH. Sclera. In: Spencer WH, editor. Ophthalmic pathology. 3rd ed. Philadelphia, PA: WB Saunders Company; 1985. p. 389–422.

    Google Scholar 

  3. Waaler E. On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta Pathol Microbiol Scand. 1940;17:172.

    Article  CAS  Google Scholar 

  4. Rose HM, Ragan C, Pearce E, et al. Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc Soc Exp Biol Med. 1948;68:1.

    PubMed  CAS  Google Scholar 

  5. Carson DA. Rheumatoid factor. In: Kelley WN, Harris Jr ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. 3rd ed. Philadelphia, PA: W. B Saunders Company; 1989.

    Google Scholar 

  6. Dresner E, Trombly P. The latex-fixation reaction in nonrheumatic diseases. N Engl J Med. 1959;261:981.

    Article  PubMed  CAS  Google Scholar 

  7. Howell DS, Malcolm JM, Pike H. The FII agglutinating factors in the serum of patients with nonrheumatic diseases. Am J Med. 1960;29:662.

    Article  PubMed  CAS  Google Scholar 

  8. Kunkel HG, Simon HJ, Fudenberg H. Observations concerning positive serologic reactions for rheumatoid factor in certain patients with sarcoidosis and other hyperglobulinemic states. Arthritis Rheum. 1958;1:289.

    Article  PubMed  CAS  Google Scholar 

  9. Aho K, Palosuo T, Raunio V, et al. When does rheumatoid disease start? Arthritis Rheum. 1985;28:485.

    Article  PubMed  CAS  Google Scholar 

  10. Ball J, Lawrence JS. The relationship of rheumatoid serum factor to rheumatoid arthritis. Ann Rheum Dis. 1963;22:311.

    Article  PubMed  CAS  Google Scholar 

  11. Del Puente A, Knowler WC, Pettit DJ, et al. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum. 1988;31:1239.

    Article  PubMed  Google Scholar 

  12. Bland JH, Brown EW. Seronegative and seropositive rheumatoid arthritis. Clinical, radiological, and biochemical differences. Ann Intern Med. 1964;60:88.

    PubMed  CAS  Google Scholar 

  13. Mongan ES, Cass RM, Jacox RF, et al. A study of the relation of seronegative and seropositive rheumatoid arthritis to each other and to necrotizing vasculitis. Am J Med. 1969;47:33.

    Article  Google Scholar 

  14. Sharp JT, Calkins E, Cohen AS, et al. Observations on the clinical, chemical, and serological manifestations of rheumatoid arthritis based on the course of 154 cases. Medicine. 1964;43:41.

    Article  PubMed  CAS  Google Scholar 

  15. Sievers K. The rheumatoid factor in definite rheumatoid arthritis: an analysis of 1279 adult patients, with a follow-up study. Acta Rheum Scand Suppl. 1965;9:1.

    Google Scholar 

  16. Koopman WJ, Schrohenloher RE. Rheumatoid factor. In: Utsinger PD, Zvaifler NJ, Ehrlich GE, editors. Rheumatoid arthritis. Philadelphia, PA: JB Lippincott Company; 1985. p. 217–41.

    Google Scholar 

  17. Koopman WJ, Schrohenloher RE. A sensitive radioimmunoassay for quantitation of IgM rheumatoid factor. Arthritis Rheum. 1980;23:302.

    Article  PubMed  CAS  Google Scholar 

  18. Koopman WJ, Schrohenloher RE, Solomon A. A quantitative assay for IgA rheumatoid factor. J Immunol Methods. 1982;50:89.

    Article  PubMed  CAS  Google Scholar 

  19. Hay FC, Nineham LJ, Roitt IM. Routine assay for detection of IgG and IgM antiglobulins in seronegative and seropositive rheumatoid arthritis. Br Med J. 1975;3:203.

    Article  PubMed  CAS  Google Scholar 

  20. Wernick R, LoSpalluto JJ, Fink CW, et al. Serum IgG and IgM rheumatoid factors by solid phase radioimmunoassay: a comparison between adult and juvenile rheumatoid arthritis. Arthritis Rheum. 1981;24:1501.

    Article  PubMed  CAS  Google Scholar 

  21. Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146:797.

    PubMed  Google Scholar 

  22. Markatseli TE, Voulgari PV, Alamanos Y, et al. Prognostic factors of radiological damage in rheumatoid arthritis: a ten year retrospective study. J Rheumatol. 2011;38:44.

    Article  PubMed  Google Scholar 

  23. Hardgraves MM, Richmond H, Morton R. Presentation of two bone marrow elements: the “tart” cell and “LE” cell. Proc Staff Meet Mayo Clin. 1948;23:25.

    Google Scholar 

  24. Haserick JR, Sunderberg RD. The bone marrow as a diagnosis aid in acute disseminated lupus erythematosus. J Invest Dermatol. 1948;11:209.

    PubMed  CAS  Google Scholar 

  25. Friou GJ. Clinical application of lupus serum-­nucleoprotein reaction using fluorescent antibody technique. J Clin Invest. 1957;36:890.

    Google Scholar 

  26. Holman HR, Kunkel HG. Affinity between the lupus erythematosus serum factor and cell nuclei and nucleoprotein. Science. 1957;126:162.

    Article  PubMed  CAS  Google Scholar 

  27. Holborow EJ, Weir DM, Johnson GD. A serum factor in lupus erythematosus with affinity for tissue nuclei. Br Med J. 1957;2:732.

    Article  PubMed  CAS  Google Scholar 

  28. Fries JF. Systemic lupus erythematosus: a clinical analysis. Philadelphia, PA: WB Saunders Company; 1975.

    Google Scholar 

  29. Reichlin M. Antinuclear antibodies. In: Kelley WN, Harris ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. 3rd ed. Philadelphia, PA: W.B. Saunders Company; 1989.

    Google Scholar 

  30. Notman DD, Kurata N, Tan EM. Profiles of antinuclear antibodies in systemic rheumatic disease. Ann Intern Med. 1975;83:464.

    PubMed  CAS  Google Scholar 

  31. Ballou SP, Kushner I. Anti-native DNA detection by the crithidia luciliae method: an improved guide to the diagnosis and management of systemic lupus erythematosus. Arthritis Rheum. 1979;22:321.

    Article  PubMed  CAS  Google Scholar 

  32. Munves EF, Schur PH. Antibodies to Sm and RNP: prognosticators of disease involvement. Arthritis Rheum. 1983;26:848.

    Article  PubMed  CAS  Google Scholar 

  33. Tan EM, Rodman GP, Garcia I, et al. Diversity of antinuclear antibodies in progressive systemic sclerosis. Arthritis Rheum. 1980;23:617.

    Article  PubMed  CAS  Google Scholar 

  34. Fritzler MJ, Kinsella TD, Garbutt E. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med. 1980;65:520.

    Article  Google Scholar 

  35. Bresnihan B, Bunn C, Snaith ML, et al. Antiri­bonucleoprotein antibodies in connective tissue diseases: examination by counterimmunoelectrophoresis. Br J Med. 1977;1:610.

    Article  CAS  Google Scholar 

  36. Huo AP, Lin KC, Chou CT. Predictive and prognostic value of antinuclear antibodies and rheumatoid factor in primary Sjögren´s syndrome. Int J Rheum Dis. 2011;13:39.

    Article  Google Scholar 

  37. van der Woude FJ, Rasmussen N, Lobatto S, et al. Autoantibodies against neutrophils and monocytes; tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet. 1985;1:425.

    Article  PubMed  Google Scholar 

  38. Ludemann G, Gross WL. Autoantibodies against cytoplasmic structures of neutrophil granulocytes in Wegener’s granulomatosis. Clin Exp Immunol. 1987;69:350.

    PubMed  CAS  Google Scholar 

  39. Bruner BF, Vista ES, Wynn DM, et al. antineutrophil cytoplasmic antibodies target sequential functional proteinase 3 epitopes in the sera of patients with Wegener´s granulomatosis. Clin Exp Immunol. 2010;162:262.

    Article  PubMed  CAS  Google Scholar 

  40. Nölle B, Specks U, Lüdemann J, et al. Anticytoplasmic autoantibodies: their immunodiagnostic value in Wegener’s granulomatosis. Ann Intern Med. 1989;111:28.

    PubMed  Google Scholar 

  41. Falk RJ, Jennette JC. Antineutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Eng J Med. 1988;318:1651.

    Article  CAS  Google Scholar 

  42. Bullen CL, Liesegang TJ, McDonald TJ, DeRemee RA. Ocular complications of Wegener’s granulomatosis. Ophthalmology. 1983;90:279.

    PubMed  CAS  Google Scholar 

  43. Jennette JC, Wilkman AS, Falk RJ. Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am J Pathol. 1989;135:921.

    PubMed  CAS  Google Scholar 

  44. Levy-Clarke G, Ding X, Gangaputra S, et al. Recalcitrant granulomatous sclerouveitis in a patient with granulomatous ANCA-associated vasculitis. Ocul Immunol Inflamm. 2009;17:83.

    Article  PubMed  Google Scholar 

  45. Soukiasian SH, Foster CS, Niles JL, Raizman MB. Diagnostic value of anti-neutrophil cytoplasmic antibodies (ANCA) in scleritis associated with Wegener’s granulomatosis. Ophthalmology. 1992;99(1):125.

    PubMed  CAS  Google Scholar 

  46. Cochrane C, Hawkins D. Studies on circulating immune complexes. III Factors governing the ability of circulating complexes to localize in blood vessels. J Exp Med. 1968;127:137.

    Article  PubMed  CAS  Google Scholar 

  47. Nydegger UE, Kazatchkine MD, Lambert PH. Immune complexes. In: Fougereau M, Dausset J, editors. Progress in immunology IV. Paris: Academic; 1980.

    Google Scholar 

  48. Jones VE, Jacoby RK, Wallington T, Holt P. Immune complexes in early arthritis. I. Detection of immune complexes before rheumatoid arthritis is definite. Clin Exp Immunol. 1981;44:512.

    PubMed  CAS  Google Scholar 

  49. Zubler RH, Nydegger UE, Perrin LH, et al. Circulating and intraarticular immune complexes in patients with rheumatoid arthritis. J Clin Invest. 1976;57:1308.

    Article  PubMed  CAS  Google Scholar 

  50. Gabay R, Zubler RH, Nydegger UE, et al. Immune complexes and complement catabolism in ankylosing spondylitis. Arthritis Rheum. 1977;20:913.

    Article  PubMed  CAS  Google Scholar 

  51. Lessard J, Nunnery E, Cecere F, et al. Relationship between the articular manifestations of rheumatoid arthritis and circulating immune complexes detected by three methods and specific classes of rheumatoid factors. J Rheumatol. 1983;10:411.

    PubMed  CAS  Google Scholar 

  52. Hamburger MI, Lawley TJ, Kimberley RP, et al. A serial study of systemic reticuloendothelial system Fc receptor functional activity in systemic lupus erythematosus. Arthritis Rheum. 1982;25:1.

    Article  Google Scholar 

  53. Lloyd W, Schur PH. Immune complexes, complement, and antiDNA in exacerbations of systemic lupus erythematosus (SLE). Medicine. 1981;60:208.

    Article  PubMed  CAS  Google Scholar 

  54. Scott DG, Bacon PA, Tribe CR. Systemic rheumatoid vasculitis: a clinical and laboratory study of 50 cases. Medicine (Baltimore). 1981;60(4):288.

    CAS  Google Scholar 

  55. Zubler RH, Lange G, Lambert PH, et al. Detection of immune complexes in unheated sera by a modified 125I-C1q binding test effect of heating on the binding of C1q by immune complexes and application of the test to systemic lupus erythematosus. J Immunol. 1976;116:232.

    PubMed  CAS  Google Scholar 

  56. Theofilopoulos AN, Wilson CB, Dixon FJ. The Raji cell radioimmune assay for detecting immune complexes in human sera. J Clin Invest. 1976;57:169.

    Article  PubMed  CAS  Google Scholar 

  57. Hugli TE. The structural basis for anaphylatoxin and chemotactic function of C3a, C4a, and C5a. CRC Crit Rev Immunol. 1981;2:321.

    Google Scholar 

  58. Hugli TE, Muller-Eberhard HJ. Anaphylatoxins: C3a and C5a. Adv Immunol. 1987;26:1.

    Article  Google Scholar 

  59. Scott DGI, Bacon PA, Allen C. et al:IgG rheumatoid factor, complement, and immune complexes in rheumatoid synovitis and vasculitis: Comparative and serial studies during cytotoxic therapy. Clin Exp Immunol. 1981;43:54.

    PubMed  CAS  Google Scholar 

  60. Hunder GG, McDuffie FC. Hypocomplementinemia in rheumatoid arthritis. Am J Med. 1973;54:461.

    Article  PubMed  CAS  Google Scholar 

  61. Shur PH. Complement studies of sera and other biologic fluids. Hum Pathol. 1983;14:338.

    Article  Google Scholar 

  62. Ruddy S, Everson LK, Shur PH, et al. Hemolytic assay of the ninth complement component: elevation and depletion in rheumatic diseases. J Exp Med. 1971;134:259S.

    PubMed  CAS  Google Scholar 

  63. Ruddy S, Carpenter CB, Müller-Eberhard HJ, et al (1968) Complement component levels in hereditary angioneurotic edema and isolated C’2 deficiency in man. In: Miescher PA, Grabar P (eds.), Mechanisms of Inflammation Induced by Immune Reactions. Vth International Immunopathology Symposium. Basel, Schwabe, and Company p. 231.

    Google Scholar 

  64. Mayer MM. Complement and complement fixation. In: Kabat EA, Mayer MM, editors. Experimental Immunochemistry. Springfield, MA: Charles C Thomas; 1961. p. 133.

    Google Scholar 

  65. Calin A. HLA-B27: To type or not to type? Ann Intern Med. 1980;92:208.

    PubMed  CAS  Google Scholar 

  66. Calin A. HLA-B27 in 1982. Reappraisal of a clinical test. Ann Intern Med. 1982;96:114.

    PubMed  CAS  Google Scholar 

  67. Vastesaeger N, van der Heijde D, Inman RD, et al. Predicting the outcome of ankylosing spondylitis therapy. Ann Rheum Dis. 2011;70(6):973–81.

    Article  PubMed  Google Scholar 

  68. Holmes KK, Lukehart SA. Syphilis. In: Braunwald E, Isselbacher KJ, Petersdorf RG, et al., editors. Harrison’s Principles of internal medicine, vol. 1. 11th ed. New York, NY: McGraw-Hill; 1987. p. 639–49.

    Google Scholar 

  69. Spoor TC, Wynn P, Hartel WC, et al. Ocular syphilis: acute and chronic. J Clin Neuro Ophthalmol. 1983;3:197.

    CAS  Google Scholar 

  70. Harner RE, Smith JL, Israel CW. The FTA-ABS in late syphilis. A serological study in 1,985 cases. JAMA. 1968;203:545.

    Article  PubMed  CAS  Google Scholar 

  71. Hart G. Syphilis tests in diagnostic and therapeutic decision making. Ann Intern Med. 1986;104:368.

    PubMed  CAS  Google Scholar 

  72. Lesser RL, Kornmehl EW, Pachner AR, et al. Neuro- ophthalmologic manifestations of Lyme disease. Ophthalmology. 1990;97:699.

    PubMed  CAS  Google Scholar 

  73. Harper DR, Grose C. IgM and IgG responses to varicella-zoster virus p32/p36 complex after chickenpox and zoster, congenital and subclinical infectios, and vaccination. J Infect Dis. 1989;159:444.

    Article  PubMed  CAS  Google Scholar 

  74. Schluger NW, Burzynski J. Recent advances in testing for latent TB. Chest Dec. 2010;138:1456.

    Article  CAS  Google Scholar 

  75. Diel R, Goleti D, Ferrara G, et al. Interferon-γ release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J. 2011;37:88.

    Article  PubMed  CAS  Google Scholar 

  76. Cordero-Coma M, Calleja S, Torres HE, et al. The value of an immune response to Mycobacterium tuberculosis in patients with chronic posterior uveitides revisited: utility of the new IGRAS. Eye. 2010;24:36.

    Article  PubMed  CAS  Google Scholar 

  77. Itty S, Bakri SJ, Pulido JS, et al. Initial results of QuantiFERON-TB Gold testing in patients with uveitis. Eye. 2009;23:904.

    Article  PubMed  CAS  Google Scholar 

  78. Ball PM, Pernollet M, Bouillet L, et al. Usefulness of an in-vitro tuberculosis interferon-g release assay (T-SPOT.TB) in the first-line check-up of uveitis patients. Ann Med. 2010;42:546.

    Article  PubMed  Google Scholar 

  79. Rothova A, de Boer JH, Ten Dam-van Loon NH, et al. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115:306.

    Article  PubMed  Google Scholar 

  80. Jones HE, Miller SD, Greenburg HH. Measurement of tuberculin reactions. N Engl J Med. 1972;287:721.

    PubMed  CAS  Google Scholar 

  81. Watson PG, Bovey E. Anterior segment fluorescein angiography in the diagnosis of scleral inflammation. Ophthalmology. 1985;92:1.

    PubMed  CAS  Google Scholar 

  82. Lemarinel B, Gabison E, Doan S, et al. Anterior-segment indocyanine green angiography in the management of anterior scleritis. J Fr Ophthalmol. 2008;31:495.

    Article  CAS  Google Scholar 

  83. Watson PG, Booth-Mason S. Fluorescein angiography in the differential diagnosis of sclerokeratitis. Br J Ophthalmol. 1987;71:145.

    Article  PubMed  CAS  Google Scholar 

  84. Bron AJ, Easty DL. Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK. 1970;90:339.

    PubMed  CAS  Google Scholar 

  85. Watson PG. Anterior segment fluorescein angiography in the surgery of immunologically induced corneal and scleral destructive disorders. Ophthalmology. 1987;94:1452.

    PubMed  CAS  Google Scholar 

  86. Raizman MB, Sainz de la Maza M, Foster CS. Tectonic keratoplasty for peripheral ulcerative keratitis. Cornea. 1991;10(4):312.

    Article  PubMed  CAS  Google Scholar 

  87. Amalric P, Rebière P, Jourdes JC. Nouvelles indications de l’angiographie fluoresceinique du segment anterieur de l’oeil. Ann Ocul. 1971;204:455.

    CAS  Google Scholar 

  88. Ikegami M. Fluorescein angiography of the anterior ocular segment. Part 1. Hemodynamics in the anterior ciliary vessels. Nippon Ganka Gakkai Zasshi. 1974;78:371.

    PubMed  CAS  Google Scholar 

  89. Matsui M, Justice Jr J. Anterior segment fluorescein angiography. Int Ophthalmol Clin. 1976;16:189.

    PubMed  CAS  Google Scholar 

  90. Kottow MH. Anterior segment fluorescein angiography. Baltimore: Williams & Wilkins; 1978.

    Google Scholar 

  91. Saari KM. Anterior segment fluorescein angiography in inflammatory diseases of the cornea. Acta Ophthalmol. 1979;57:781.

    CAS  Google Scholar 

  92. Marsh RJ, Ford SM. Blood flow in the anterior segment of the eye. Trans Ophthalmol Soc UK. 1980;100:388.

    PubMed  CAS  Google Scholar 

  93. Talusan ED, Schwartz B. Fluorescein angiography: demonstration of flow pattern of anterior ciliary arteries. Arch Ophthalmol. 1981;99:1074.

    Article  PubMed  CAS  Google Scholar 

  94. Meyer PA, Watson PG. Low dose fluorescein angiography of the conjunctiva and episclera. Br J Ophthalmol. 1987;71:2.

    Article  PubMed  CAS  Google Scholar 

  95. Meyer PA. Pattern of blood flow in episcleral vessels studied by low-dose fluorescein videoangiography. Eye. 1988;2:533.

    Article  PubMed  Google Scholar 

  96. Ormerod LD, Fariza E, Hughes GW, Doane MG, Webb RH. Anterior segment fluorescein videoangiography with a scanning angiographic microscope. Ophthalmology. 1990;97:745.

    PubMed  CAS  Google Scholar 

  97. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82.

    PubMed  CAS  Google Scholar 

  98. Ashton N. The blood retinal barrier and vaso-glial relationship in retinal disease. Trans Ophthalmol Soc UK. 1965;85:199.

    PubMed  CAS  Google Scholar 

  99. Jensen VA, Lundback K. Fluorescence angiography of the iris in recent and long-term diabetes: preliminary communication (XVII Scandinavian Ophthalmological Congress, Copenhagen 1967). Acta Ophthalmol (Copenh). 1968;46:584.

    Article  CAS  Google Scholar 

  100. Cobb B. Vascular tufts at the pupillary margin. Trans Ophthalmol Soc UK. 1968;88:211.

    Google Scholar 

  101. Raviola G. Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci. 1983;24:725.

    PubMed  CAS  Google Scholar 

  102. Iwamoto T, Smelser GK. Electron microscopic studies of corneal capillaries. Invest Ophthalmol Vis Sci. 1965;4:815.

    CAS  Google Scholar 

  103. Rabkin MD, Bellhorn MB, Bellhorn R. Selected molecular weight dextrans for in vivo permeability studies of rat retinal vascular disease. Exp Eye Res. 1977;24:607.

    Article  PubMed  CAS  Google Scholar 

  104. Bellhorn R. Permeability of blood-ocular barriers of neonatal and adult cats to fluorescein-labelled dextrans of selected molecular size. Invest Ophthalmol Vis Sci. 1981;21:282.

    PubMed  CAS  Google Scholar 

  105. Lightman SL, Caspers-Velu LE, Hirose S, Nussenblatt RB, Palestine AG. Angiography with fluorescein-labeled dextrans in a primate model of uveitis. Arch Ophthalmol. 1987;105:844.

    Article  PubMed  CAS  Google Scholar 

  106. Palestine AG, Brubaker RF. Plasma binding of fluorescein in normal subjects and in diabetic patients. Arch Ophthalmol. 1982;100:1160.

    Article  PubMed  CAS  Google Scholar 

  107. Meyer PA, Fitzke FW. Computer assisted analysis of fluorescein videoangiograms. Br J Ophthalmol. 1990;74:275.

    Article  PubMed  CAS  Google Scholar 

  108. Leber T. Die cirkulations-und Ernährungs­verhältnisse des Auges. In: Saemisch T, editor. Graefe-Saemisch Handbuch der Gesamten Augenheilkunde. 2nd ed. Leipzig: Wilhelm Engelmann; 1903.

    Google Scholar 

  109. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Br J Ophthalmol. 1951;35:291.

    Article  PubMed  CAS  Google Scholar 

  110. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part II: aqueous veins. Br J Ophthalmol. 1952;36:265.

    Article  PubMed  CAS  Google Scholar 

  111. Morrison JC, Van Buskirk EM. Anterior collateral circulation in the primate eye. Ophthalmology. 1983;90:707.

    PubMed  CAS  Google Scholar 

  112. Brancato R, Frosini R, Boshi M. L’Angiografia superficiale a fluorescein del bulbo oculare. Ann Ottal Clin Ocul. 1969;95:433.

    CAS  Google Scholar 

  113. Laatikainen L. Perilimbal vasculature in glaucomatous eyes. Acta Ophthalmol. 1971;111(suppl):54.

    Google Scholar 

  114. Raitta C, Vannas S. Fluorescein angiographic features of the limbus and perilimbal vessels. Ear Nose Throat J. 1971;50:58.

    Google Scholar 

  115. Shimizu K, Ujie K. Structure of ocular vessels. Tokyo: Igaku-Shoin; 1978.

    Google Scholar 

  116. Bron AJ, Easty DL. Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK. 1970;90:339.

    PubMed  CAS  Google Scholar 

  117. Smith ME, Haik BG, Coleman DJ. Diagnostic ocular ultrasonography. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York, NY: Springer; 1990. p. 47–60.

    Chapter  Google Scholar 

  118. Benson WE, Shields JA, Tasman W, Crandall AS. Posterior scleritis. A cause of diagnostic confusion. Arch Ophthalmol. 1979;97:1482.

    Article  PubMed  CAS  Google Scholar 

  119. Benson WE. Posterior scleritis. Surv Ophthalmol. 1988;32:297.

    Article  PubMed  CAS  Google Scholar 

  120. Cappaert WE, Purnell EW, Frank KE. Use of B-sector scan ultrasound in the diagnosis of benign choroidal folds. Am J Ophthalmol. 1977;84:375.

    PubMed  CAS  Google Scholar 

  121. Rochels R, Reis G. Echography in posterior scleritis. Klin Monatsbl Augenheilkd. 1980;177:611.

    Article  PubMed  CAS  Google Scholar 

  122. Taveras JL, Haik BG. Magnetic resonance imaging in ophthalmology. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York, NY: Springer; 1990. p. 32–46.

    Chapter  Google Scholar 

  123. Mauriello JA, Flanagan JC. Management of orbital inflammatory disease. A protocol. Surv Ophthalmol. 1984;29:104.

    Article  PubMed  Google Scholar 

  124. Trokel SL, Hilal SK. Submillimeter resolution CT scanning of orbital diseases. Ophthalmology. 1980;87:412.

    PubMed  CAS  Google Scholar 

  125. Trokel SL. Computed tomographic scanning of orbital inflammations. Int Ophthalmol Clin. 1982;22:81.

    Article  PubMed  CAS  Google Scholar 

  126. Fong LP, Sainz de la Maza M, Rice BA, et al. Immunop­athology of scleritis. Ophthalmology. 1991;98:472.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite Sainz de la Maza MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de la Maza, M.S., Tauber, J., Foster, C.S. (2012). Diagnostic Approach of Episcleritis and Scleritis. In: The Sclera. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6502-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6502-8_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6501-1

  • Online ISBN: 978-1-4419-6502-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics