Advertisement

Ancillary Studies in FNAC of Soft Tissue and Bone Lesions

  • Marilyn M. Bui
  • Walid E. Khalbuss
Chapter
Part of the Essentials in Cytopathology book series (EICP, volume 9)

Abstract

Fine needle aspiration biopsy is useful in the diagnosis of bone and soft tissue tumors, especially for superficial primary sarcomas and metastatic or recurrent disease. The rinse of the biopsy needle often generates an adequate tissue for cell block preparation, which is a valuable source of specimen for ancillary studies. Ancillary studies generally include immunocytochemistry (IHC), cytogenetic karyotyping, flow cytometry, electron microscopy (EM), fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and mutational analysis. Karyotyping (will detect structural and numerical chromosomal abnormality when sarcoma is suspected, Table 9.1) and flow cytometry (will detect the clonality when lymphoma is suspected) require fresh tumor sample.

Keywords

Reverse Transcriptase Polymerase Chain Reaction Synovial Sarcoma Anaplastic Large Cell Lymphoma Granular Cell Tumor Smooth Muscle Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fisher C. The comparative roles of electron microscopy and immunohistochemistry in the diagnosis of soft tissue tumors. Histopathology. 2006;48(1):32–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Shirazi N, Kadam V, Deodhar K, Shet T. Ultrastructure in resolving a diagnosis of poorly differentiated clear cell sarcoma of soft parts in an adolescent male. Indian J pathol Microbiol. 2008;51(2):280–283.PubMedCrossRefGoogle Scholar
  3. 3.
    Guillou L, Lamoureux E, Masse S, Costa J. Alveolar soft-part sarcoma of the uterine corpus: histological, immunocytocehmical and ultrastructural study of a case. Virchow Arch Pathol Anat Histopathol. 1991;418(5):467–471.CrossRefGoogle Scholar
  4. 4.
    Srivastava A, Roseberg AE, Selig M, Rubin BP, Nielsen GP. Keratin-positive Ewing’s sarcoma: an ultrastructural study of 12 cases. Int J Surg Pathol. 2005;13(1):43–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Gu M, Antonescu CR, Guiter G, Huvos AG, Ladanyi M, Zakowski MF. Cytokeratin immunoreactivity in Ewing’s sarcoma: prevalence in 50 cases confirmed by molecular diagnostic studies. Am J Surg Pathol. 2000;24(3):410–416.PubMedCrossRefGoogle Scholar
  6. 6.
    Coindre JM, Pelmus M, Hostein I, Lussan C, Bui BN, Guillou L. Should molecular testing be required for diagnosing synovial sarcoma? A prospective study of 204 cases. Cancer. 2003;98(12):2700–2707.PubMedCrossRefGoogle Scholar
  7. 7.
    Kilpatrick SE, Teot LA, Stanley MW, Ward WG, Savage PD, Geisinger KR. Fine-needle aspiration biopsy of synovial sarcoma: a cytomorphologic analysis of primary, recurrent, and metastatic tumors. Am J Clin Diagn Cytopathol. 1999;20(1):6–9.CrossRefGoogle Scholar
  8. 8.
    Molenaar WM, van den Berg E, Dolfin AC, Zorgdrager H, Hoekstra HJ. Cytogenetic of fine needle aspiration biopsies of sarcoma. Cancer Genet Cytogenet. 1995;84(1):27–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Nilsson G, Wang M, Weide J, et al. Reverse transcriptase polymerase chain reaction on fine needle aspirates for rapid detection of translocations in synovial sarcoma. Acta Cytol. 1998;42(6):1317–1324.PubMedCrossRefGoogle Scholar
  10. 10.
    Du CY, Shi YQ, Zhou Y, Fu H, Zhao GF. Status and clinical analysis of c-kit and PDGFR mutations in the gastrointestinal stromal tumors. Zhonghua Wei Chang Wai Ke Za Zhi. 2008;11(4):371–375.PubMedGoogle Scholar
  11. 11.
    Lazar A, Abruzzo LV, Pollock RE, Lee S, Czeniak B. Molecular diagnosis of sarcoma. Chromosomal translocations in sarcomas. Arch Pathol Lab Med. 2006;130:1200–1207.Google Scholar
  12. 12.
    Sirvent N, Coirdre JM, Maire G, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31(10):1476–1489.PubMedCrossRefGoogle Scholar
  13. 13.
    Shimada S, Ishizawa T, Ishizawa K, Matsumura T, Hasegawa T, Hirose T. The value of MDM2 and CDK4 amplifiation levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol. 2006;37(9):1123–1129.PubMedCrossRefGoogle Scholar
  14. 14.
    Sugita S, Seki K, Yolozawa K, et al. Analysis of CHOP rearrangement in pleomorphic liposarcomas using fluorescence in situ hybridization. Cancer Sci. 2009;100(1):82–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Downs-Kelly E, Goldblum JR, Patel RM, et al. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008;32(1):8–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  • Marilyn M. Bui
    • 1
  • Walid E. Khalbuss
    • 2
  1. 1.Moffitt Cancer CenterTampaUSA
  2. 2.University of Pittsburgh Medical Center, UPMC-ShadysidePittsburghUSA

Personalised recommendations