Mechanics of Liquid Mixtures

  • Kumbakonam Ramamani Rajagopal


A brief introduction is provided for modeling the response of mixtures under the assumption that the constituents can be modeled as a continuum and that the constituents co-occupy the region of the mixture in a homogenized sense. The constituents of the mixture can undergo chemical reactions and there can be interconversion between the constituents. Balance laws are provided for the constituents of the mixture that allow for the chemical reactions as well as the numerous other interaction mechanisms between the constituents. After developing the general framework, the theory will be used to develop a model for the flow of a mixture of fluids.


Constitutive Relation Entropy Production Linear Momentum Partial Stress Specific Internal Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adkins JE (1963) Nonlinear diffusion I. Diffusion and flow of mixtures of fluids. Philos Trans R Soc Lond A 225:607–633MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Sharif A, Chamniprasart K, Rajagopal KR, Szeri AZ (1993) Lubrication with binary mixtures: Liquid–liquid emulsion. J Tribol 115(1):46–55CrossRefGoogle Scholar
  3. 3.
    Anderson TB, Jackson R (1968) A fluid mechanical description of fluidized beds: Stability of the state of uniform fluidization. Ind Eng Chem Fund 7:12-21CrossRefGoogle Scholar
  4. 4.
    Atkin RJ, Craine RE (1976) Continuum theories of mixtures: Applications. J Inst Math Appl 17:153–207MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Barnea E, Mizrahi J (1976) On the effective viscosity of liquid–liquid dispersions. Ind Eng Chem Fund 15:120–125CrossRefGoogle Scholar
  6. 6.
    Basset AB (1888) Treatise on hydrodynamics. Deighton Bell, CambridgeMATHGoogle Scholar
  7. 7.
    Batchelor G, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order C (2). J Fluid Mech 56:401–427MATHCrossRefGoogle Scholar
  8. 8.
    Barrer RM (1941) Diffusion in and through solids. Cambridge University Press, LondonGoogle Scholar
  9. 9.
    Bedford A, Drumheller DS (1983) Recent advances: Theories of immiscible and structured mixtures. Int J Eng Sci 21:863–960MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Brinkman HC (1947) On the permeability of media consisting of closely packed porous particles. Appl Sci Res A 1:81–86CrossRefGoogle Scholar
  11. 11.
    Brinkman HC (1947) The calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A 1:27–34CrossRefGoogle Scholar
  12. 12.
    Biot MA (1934) Theory of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J Acoust Soc Am 28:168–178 DOI:10.1121/1.1908239MathSciNetGoogle Scholar
  13. 13.
    Biot MA (1934) Theory of elastic waves in a fluid-saturated porous solid, II. High frequency range. J Acoust Soc Am 28:179–191 DOI:10.1121/1.1908241MathSciNetGoogle Scholar
  14. 14.
    Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRefGoogle Scholar
  16. 16.
    Brenner H (1958) Dissipation of energy due to solid particles suspended in a viscous liquid. Phys Fluids 1:338–346MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Brodnyan JG (1959) The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Trans Soc Rheol 3:61–68CrossRefGoogle Scholar
  18. 18.
    Boussinesq J (1913) Vitesse de la chute lente, devenue uniforme, d’une goutte liquide spherique, dans un fluide visqueux de poids specifique moindre. Comp Rend Acad Sci 156:1124–1129MATHGoogle Scholar
  19. 19.
    Bowen RM (1967) Towards a thermodynamics and mechanics of mixtures. Arch Rational Mech Anal 24(5):370–403MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Bowen RM, Garcia DJ (1970) On the thermodynamics of mixtures with several temperatures. Int J Eng Sci 8:63–83CrossRefGoogle Scholar
  21. 21.
    Bowen RM (1991) Theory of mixtures. In: Continuum physics, Ed Eringer AC, Academic Press, New York, Vol IIIGoogle Scholar
  22. 22.
    Burgers JM, Jeffery GB (1939) Mechanical considerations – Model systems – Phenomenological theories of relaxation and of viscosity, First Report on Viscosity and Plasticity, 2nd edn. Nordemann Publishing Company, Inc., New York Prepared by the committee for the study of viscosity of the academy of sciences at Amsterdam. Proc R Soc Lond A 102:161–179Google Scholar
  23. 23.
    Craig RE (1970) The motion of a solid in a fluid. Am J Math 20:162–177Google Scholar
  24. 24.
    Craine RE, Green AE, Naghdi PM (1970) A mixture of viscous elastic materials with different constituent temperatures. Quart J Mech Appl Math 23:171–184MATHCrossRefGoogle Scholar
  25. 25.
    Darcy H (1856) Les Fontaies Publiques de La Ville de Dijon. Victor DelmontGoogle Scholar
  26. 26.
    Einstein A (1906) Eine neune Bestimmung der Molekul-Dimension. Ann Phys 19:289–306MATHCrossRefGoogle Scholar
  27. 27.
    Einstein A (1911) Eine neune Bestimmung der Molekul-Dimension. Ann Phys 34:591–592MATHCrossRefGoogle Scholar
  28. 28.
    Fick A (1855) Uber diffusion. Ann Phys 94:59–86CrossRefGoogle Scholar
  29. 29.
    Green AE, Naghdi PM (1969) On basic equations for mixtures. Quart J Mech Appl Math 22:427–438MATHCrossRefGoogle Scholar
  30. 30.
    Greenhill AG (1898) The motion of a solid in infinite liquid under no forces. Am J Math 20:1–75MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hadmard JS (1911) Mecanique-mouvement permanent lent une sphere liquids et visqueuse dans un liquide visqueux. Comp Rend Acad Sci 154:1735–1738Google Scholar
  32. 32.
    Hadmard JS (1912) Hydrodynamique – Sur une question relative aus liquids visqueux. Comp Rend Acad Sci 154:109Google Scholar
  33. 33.
    Happel M, Brenner H (1973) Low Reynolds number hydrodynamics, Noordhaff, LeydenGoogle Scholar
  34. 34.
    Hatschek E (1928) The viscosity of liquids. Bel G and Son, LondonGoogle Scholar
  35. 35.
    Johnson G, Massoudi M, Rajagopal KR (1991) Flow of a fluid infused with solid particles through a pipe. Int J Eng Sci 29(6):649–661MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Jeffery GB (1922) The Motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A, Containing papers of a mathematical and physical character 102(715):161–179
  37. 37.
    Kirchoff G (1869) Uber die benegung eines rotationskorpers in earner fliissigkeit. Crelle 71:237–262Google Scholar
  38. 38.
    Lamb H (1877) On the free motion of a solid through an infinite mass liquid. Math Soc 8: 273–286MATHGoogle Scholar
  39. 39.
    Malek J, Rajagopal KR (2008) A thermodynamic framework for a mixture of two liquids. Nonlinear Anal R World Appl 9(4):1649–1660MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Massoudi M (1986) Application of mixture theory to fluidized beds, PhD thesis. University of PittsburghGoogle Scholar
  41. 41.
    Mills N (1966) Incompressible mixtures of Newtonian fluids. Int J Eng Sci 4:97–112MATHCrossRefGoogle Scholar
  42. 42.
    Mooney MJ (1954) On an indeterminate integral in Einstein’s theory of the viscosity of a suspension. J Appl Phys 25:406–407CrossRefGoogle Scholar
  43. 43.
    Munaf DR, Lee D, Wineman AS et al (1993) A boundary value problem in groundwater motion analysis – Comparison of predictions based on Darcy’s law and the continuum theory of mixtures. Math Models Methods Appl Sci 3:231MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Oldroyd JC (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc Lond A 218:122–132MATHCrossRefGoogle Scholar
  45. 45.
    Rajagopal KR, Tao L (1992) Wave propagation in elastic solids infused with fluids. Int J Eng Sci 30:1209–1232MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Rajagopal KR, Tao L (1995) Mechanics of mixtures, World Scientific, SingaporeMATHGoogle Scholar
  47. 47.
    Rajagopal KR (2003) Diffusion through solids undergoing large deformations. Mater Sci Technol 19:1175–1189CrossRefGoogle Scholar
  48. 48.
    Rajagopal KR, Srinivasa AR (2004) On thermomechanical restrictions of continua. Proc R Soc Lond Ser A: Math Phys Eng Sci 460(2042):631-651MathSciNetCrossRefGoogle Scholar
  49. 49.
    Rajagopal KR, Srinivasa AR (2004) On the thermomechanics of materials that have multiple natural configurations – Part I: Viscoelasticity and classical plasticity. Zeitschrift für Angewandte Mathematik und Physik 55(5):861–893MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Rajagopal KR, Srinivasa AR (2004) On the thermomechanics of materials that have multiple natural configurations – Part II: Twinning and solid to solid phase transformation. Zeitschrift für Angewandte Mathematik und Physik 55(6):1074–1093MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Rajagopal KR, Srinivasa AR, A Gibbs potential formulation for obtaining constitutive equations for a class of viscoelastic materials, submitted for publicationGoogle Scholar
  52. 52.
    Rayleigh JWS (1892) Correlation aspects of the viscosity–temperature relationship of the lubricating oils, PhD thesis, Technische Hogeschool Delft, The NetherlandsGoogle Scholar
  53. 53.
    Rybczynski W (1911) On the translatory motion of a fluid sphere in a viscous medium. Bull Acad Sci Cracow Ser A:447–459Google Scholar
  54. 54.
    Saltzer WD, Schulz B (1966) An attempt to treat the viscosity as a transport property of two phase materials. In: Continuum models of discrete systems 4, Eds. Erwin O and Hsieh RKT, North-Holland, AmsterdamGoogle Scholar
  55. 55.
    Samohyl I (1987) Thermodynamics of irreversible processes in fluids mixtures, Teubner, LeipzigGoogle Scholar
  56. 56.
    Seitz F (1987) The modern theory of solids. Dover Publications, New YorkGoogle Scholar
  57. 57.
    Simha R (1952) A treatment of the viscosity of concentrated suspensions. J Appl Phys 23:1020–1024CrossRefGoogle Scholar
  58. 58.
    Stokes GG (1845) On the effect of the internal friction of fluids on the motions of pendulums. Trans Camb Phil Soc 8:287–305Google Scholar
  59. 59.
    Tamura M, Kurata M (1952) On the viscosity of binary mixture of liquids. Bull Chem Soc Jpn 25(1):32–38CrossRefGoogle Scholar
  60. 60.
    Taylor GI (1932) The viscosity of fluids containing small drops of another fluid. Proc R Soc Lond A 138:41–48CrossRefGoogle Scholar
  61. 61.
    The Oxford English Dictionary (1981) Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Thomson W, Tait PG (1867) Treatise on natural philosophy, Cambridge University PressMATHGoogle Scholar
  63. 63.
    Truesdell C (1957) Sulle basi della thermomeccanica. Rend Lincei 22:33–38MathSciNetMATHGoogle Scholar
  64. 64.
    Truesdell C (1957) Sulle basi della thermomeccanica. Rend Lincei 22:158–166MathSciNetGoogle Scholar
  65. 65.
    Truesdell C (1991) A first course in rational continuum mechanics, Academic Press, New YorkMATHGoogle Scholar
  66. 66.
    Truesdell C (1984) Rational thermodynamics, Springer-Verlag, BerlinMATHCrossRefGoogle Scholar
  67. 67.
    Quemada O (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle, I. Viscosity–concentration relationship. Rheol Acta 16:82–94CrossRefGoogle Scholar
  68. 68.
    Williams WO, Sampaio R (1977) Viscosities of liquid mixtures. Z Angew Math Phys 28:607-614MATHCrossRefGoogle Scholar
  69. 69.
    Ziegler H (1963) Some extremum principles in irreversible thermodynamics. In: Sneddon IN, Hill R, Eds, Progress in solid mechanics vol. 4, North Holland Publishing Company, New YorkGoogle Scholar
  70. 70.
    Ziegler H (1983) An introducton to thermomechanics, North Holland Publishing Company, Amsterdam, 2nd EdnGoogle Scholar
  71. 71.
    Ziegler H, Wehrli C (1987) The derivation of constitutive equations from the free energy and the dissipation function. In: Wu TY, Hutchinson JW, Eds, Adv Appl Mech, Academic Press, New York 25:183–238MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas A&M UniversityTexasUSA

Personalised recommendations