Skip to main content

Time–Intensity Methods

  • Chapter
Sensory Evaluation of Food

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Time–intensity methods represent a special form of intensity scaling that is either repeated at short intervals or continuous. It offers some advantages over a single intensity estimate, giving more detailed information on changes in flavor and texture over time. This chapter reviews the history of these methods, various current techniques, issues, and approaches to data analysis and provides examples of various applications.

In general, humans perceived tastes as changing experiences originating in the mouth, which normally existed for a limited time and then either subsided or transformed into qualitatively different gustatory perceptions. Taste experiences did not begin at the moment of stimulus arrival in the mouth, did not suddenly appear at full intensity, were influenced by the pattern of taste stimulation, and often continued well beyond stimulus removal.

—(Halpern, 1991, p. 95)

Does your chewing gum lose its flavor (on the bedpost overnight)?

—Bloom and Brever, lyrics (recorded by Lonnie Donegan, May 1961, Mills Music, Inc./AA Music)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams, H., Krakauer, D. and Dallenbach, K. M. 1937. Gustatory adaptation to salt. American Journal of Psychology, 49, 462–469.

    Google Scholar 

  • Ayya, N. and Lawless, H. T. 1992. Qualitative and quantitative evaluation of high-intensity sweeteners and sweetener mixtures. Chemical Senses, 17, 245–259.

    CAS  Google Scholar 

  • Baron, R. F. and Penfield, M. P. 1996. Capsaicin heat intensity – concentration, carrier, fat level and serving temperature effects. Journal of Sensory Studies, 11, 295–316.

    Google Scholar 

  • Barylko-Pikielna, N., Mateszewska, I. and Helleman, U. 1990. Effect of salt on time–intensity characteristics of bread. Lebensmittel Wissenschaft und Technologie, 23, 422–426.

    Google Scholar 

  • Birch, G. G. and Munton, S. L. 1981. Use of the “SMURF” in taste analysis. Chemical Senses, 6, 45–52.

    Google Scholar 

  • Bloom, K., Duizer, L. M. and Findlay, C. J. 1995. An objective numerical method of assessing the reliability of time–intensity panelists. Journal of Sensory Studies, 10, 285–294.

    Google Scholar 

  • Bonnans, S. and Noble, A. C. 1993. Effect of sweetener type and of sweetener and acid levels on temporal perception of sweetness, sourness and fruitiness. Chemical Senses, 18, 273–283.

    CAS  Google Scholar 

  • Brandt, M. A., Skinner, E. Z. and Coleman, J. A. 1963. Texture profile method. Journal of Food Science, 28, 404–409.

    Google Scholar 

  • Brown, W. E., Landgley, K. R., Martin, A. and MacFie, H. J. 1994. Characterisation of patterns of chewing behavior in human subjects and their influence on texture perception. Journal of Texture Studies, 15, 33–48.

    Google Scholar 

  • Butler, G., Poste, L. M., Mackie, D. A., and Jones, A. 1996. Time–intensity as a tool for the measurement of meat tenderness. Food Quality and Preference, 7, 193–204.

    Google Scholar 

  • Cabanac, M. 1971. Physiological role of pleasure. Science, 173, 1103–1107.

    CAS  Google Scholar 

  • Cain, W. S. 1974. Perception of odor intensity and time-course of olfactory adaptation. ASHRAE transactions, 80, 53–75.

    Google Scholar 

  • Clark, C. C. and Lawless, H. T. 1994. Limiting response alternatives in time–intensity scaling: An examination of the Halo-Dumping effect. Chemical Senses, 19, 583–594.

    CAS  Google Scholar 

  • Cliff, M. 1987. Temporal perception of sweetness and fruitiness and their interaction in a model system. MS Thesis, University of California, Davis, USA.

    Google Scholar 

  • Cliff, M. and Heymann, H. 1992. Descriptive analysis of oral pungency. Journal of Sensory Studies, 7, 279–290.

    Google Scholar 

  • Cliff, M. and Heymann, H. 1993a. Time–intensity evaluation of oral burn. Journal of Sensory Studies, 8, 201–211.

    Google Scholar 

  • Cliff, M. and Heymann, 1993b. Development and use of time–intensity methodology for sensory evaluation: A review. Food Research International, 26, 375–385.

    Google Scholar 

  • Cliff, M. and Noble, A. C. 1990. Time–intensity evaluation of sweetness and fruitiness in a model solution. Journal of Food Science, 55, 450–454.

    Google Scholar 

  • Dacanay, L. 1990. Thermal and concentration effects on temporal sensory attributes of L – menthol. M.S. Thesis, University of California, Davis, USA.

    Google Scholar 

  • de Roos, K. B. 1990. Flavor release from chewing gums. In: Y. Bessiere and A. F. Thomas (eds.), Flavour Science and Technology. Wiley, Chichester, pp. 355–362.

    Google Scholar 

  • DeRovira, D. 1996. The dynamic flavor profile method. Food Technology, 50, 55–60.

    Google Scholar 

  • Dijksterhuis, G. 1993. Principal component analysis of time–intensity bitterness curves. Journal of Sensory Studies, 8, 317–328.

    Google Scholar 

  • Dijksterhuis, G. 1996. Time–intensity methodology: Review and preview. Proceedings, COST96 Meeting: Interaction of Food Matrix with Small Ligands Influencing Flavour and Texture, Dijon, France, November 20, 1995.

    Google Scholar 

  • Dijksterhuis, G. and van den Broek, E. 1995. Matching the shape of time–intensity curves. Journal of Sensory Studies, 10, 149–161.

    Google Scholar 

  • Dijksterhuis, G., Flipsen, M. and Punter, P. H. 1994. Principal component analysis of time–intensity data. Food Quality and Preference, 5, 121–127.

    Google Scholar 

  • DuBois, G. E. and Lee, J. F. 1983. A simple technique for the evaluation of temporal taste properties. Chemical Senses, 7, 237–247.

    CAS  Google Scholar 

  • Dubose, C. N., Meiselman, H. L., Hunt, D. A. and Waterman, D. 1977. Incomplete taste adaptation to different concentrations of salt and sugar solutions. Perception and Psychophysics, 21, 183–186.

    Google Scholar 

  • Duizer, L. M., Findlay, C. J. and Bloom, K. 1995. Dual-attribute time–intensity sensory evaluation: A new method for temporal measurement of sensory perceptions. Food Quality and Preference, 6, 121–126.

    Google Scholar 

  • Duizer, L. M., Bloom, K. and Findlay, C. J. 1996. Dual attribute time–intensity measurements of sweetness and peppermint perception of chewing gum. Journal of Food Science, 61, 636–638.

    CAS  Google Scholar 

  • Ebeler, S. E., Pangborn, R. M. and Jennings, W. G. 1988. Influence of dispersion medium on aroma intensity and headspace concentration of menthone and isoamyl acetate. Journal of Agricultural and Food Chemistry, 36, 791–796.

    CAS  Google Scholar 

  • Eilers, P. H. C. and Dijksterhuis, G. B. 2004. A parametric model for time–intensity curves. Food Quality and Preference, 15, 239–245.

    Google Scholar 

  • Fischer, U., Boulton, R. B. and Noble, A. C. 1994. Physiological factors contributing to the variability of sensory assessments: Relationship between salivary flow rate and temporal perception of gustatory stimuli. Food Quality and Preference, 5, 55–64.

    Google Scholar 

  • Frank, R. A., Ducheny, K. and Mize, S. J. S. 1989. Strawberry odor, but not red color, enhances the sweetness of sucrose solutions. Chemical Senses, 14, 371–377.

    CAS  Google Scholar 

  • Garrido, D., Calviño, A. and Hough, G. 2001. A parametric model to average time–intensity taste data. Food Quality and Preference, 12, 1–8.

    Google Scholar 

  • Gent, J. F. 1979. An exponential model for adaptation in taste. Sensory Processes, 3, 303–316.

    CAS  Google Scholar 

  • Gent, J. F. and McBurney, D. H. 1978. Time course of gustatory adaptation. Perception and Psychophysics, 23, 171–175.

    CAS  Google Scholar 

  • Green, B. G. 1989. Capsaicin sensitization and desensitization on the tongue produced by brief exposures to a low concentration. Neuroscience Letters, 107, 173–178.

    CAS  Google Scholar 

  • Green, B. G. and Lawless, H. T. 1991. The psychophysics of somatosensory chemoreception in the nose and mouth. In: L. M. B. T.V. Getchell and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, pp. 235–253.

    Google Scholar 

  • Guinard, J.-X., Pangborn, R. M. and Shoemaker, C. F. 1985. Computerized procedure for time–intensity sensory measurements. Journal of Food Science, 50, 543–544, 546.

    Google Scholar 

  • Guinard, J.-X., Pangborn, R. M. and Lewis, M. J. 1986. The time course of astringency in wine upon repeated ingestions, American Journal of Enology and Viticulture, 37, 184–189.

    Google Scholar 

  • Gwartney, E. and Heymann, H. 1995. The temporal perception of menthol. Journal of Sensory Studies, 10, 393–400.

    Google Scholar 

  • Haring, P. G. M. 1990. Flavour release: From product to perception. In: Y. Bessiere and A. F. Thomas (eds.), Flavour Science and Technology. Wiley, Chichester, pp. 351–354.

    Google Scholar 

  • Halpern, B. P. 1991. More than meets the tongue: Temporal characteristics of taste intensity and quality. In: H. T. Lawless and B. P. Klein (eds.), Sensory Science Theory and Applications in Foods. Marcel Dekker, New York, pp. 37–105.

    Google Scholar 

  • Holway, A. H. and Hurvich, L. M. 1937. Differential gustatory sensitivity to salt. American Journal of Psychology, 49, 37–48.

    Google Scholar 

  • Janusz, J. M., Young, P. A., Hiler, G. D., Moese, S. A. and Bunger, J. R. 1991. Time–intensity profiles of dipeptide sweeteners. In: D. E.Walters, F. T. Orthoefer and G. E. DuBois (eds.), Sweeteners: Discovery, Molecular Design and Chemoreception. ACS Symposium Series #450. American Chemical Society, Washington, DC, pp. 277–289.

    Google Scholar 

  • Jellinek, G. 1964. Introduction to and critical review of modern methods of sensory analysis (odor taste and flavor evaluation) with special emphasis on descriptive analysis. Journal of Nutrition and Dietetics, 1, 219–260.

    Google Scholar 

  • Jellinek, G. 1985. Sensory Evaluation of Food, Theory and Practice. Ellis Horwood, Chichester, England.

    Google Scholar 

  • Kroeze, J. H. A. 1979. Masking and adaptation of sugar sweetness intensity. Physiology and Behavior, 22, 347–351.

    CAS  Google Scholar 

  • Kuo, Y.-L., Pangborn, R. M. and Noble, A. C. 1993. Temporal patterns of nasal, oral and retronasal perception of citral and vanillin and interactions of these odorants with selected tastants. International Journal of Food Science and Technology, 28, 127–137.

    CAS  Google Scholar 

  • Labbe, D., Schlich, P., Pineau, N., Gilbert, F. and Martin, N. 2009. Temporal dominance of sensations and sensory profiling: A comparative study. Food Quality and Preference, 20, 216–221.

    Google Scholar 

  • Lallemand, M., Giboreau, A., Rytz, A. and Colas, B. 1999. Extracting parameters from time–intensity curves using a trapezoid model: The example of some sensory attributes of ice cream. Journal of Sensory Studies, 14, 387–399.

    Google Scholar 

  • Larson-Powers, N. and Pangborn, R. M. 1978. Paired comparison and time–intensity measurements of the sensory properties of beverages and gelatins containing sucrose or synthetic sweeteners. Journal of Food Science, 43, 41–46.

    CAS  Google Scholar 

  • Lawless, H. T. 1980. A computerized system for assessing taste intensity over time. Paper presented at the Chemical Senses and Intake Society, Hartford, CT, April 9, 1980.

    Google Scholar 

  • Lawless, H. T. 1984. Oral chemical irritation: Psychophysical properties. Chemical Senses, 9, 143–155.

    CAS  Google Scholar 

  • Lawless, H. T. and Clark, C. C. 1992. Psychological biases in time–intensity scaling. Food Technology, 46(11), 81, 84–86, 90.

    Google Scholar 

  • Lawless, H. T. and Skinner, E. Z. 1979. The duration and perceived intensity of sucrose taste. Perception and Psychophysics, 25, 249–258.

    Google Scholar 

  • Lawless, H. T. and Stevens, D. A. 1988. Responses by humans to oral chemical irritants as a function of locus of stimulation. Perception and Psychophysics, 43, 72–78.

    CAS  Google Scholar 

  • Lawless, H. T., Corrigan, C. L. and Lee, C. L. 1994. Interactions of astringent substances. Chemical Senses, 19, 141–154.

    CAS  Google Scholar 

  • Lawless, H. T., Tuorila, H., Jouppila, K., Virtanen, P. and Horne, J. 1996. Effects of guar gum and microcrystalline cellulose on sensory and thermal properties of a high fat model food system. Journal of Texture Studies 27, 493–516.

    Google Scholar 

  • Le Reverend, F. M., Hidrio, C., Fernandes, A. and Aubry, V. 2008. Comparison between temporal dominance of sensation and time intensity results. Food Quality and Preference, 19, 174–178.

    Google Scholar 

  • Leach, E. J. and Noble, A. C. 1986. Comparison of bitterness of caffeine and quinine by a time–intensity procedure. Chemical Senses, 11, 339–345.

    CAS  Google Scholar 

  • Ledauphin, S., Vigneau, E. and Causeur, D. 2005. Functional approach for the analysis of time intensity curves using B-splines. Journal of Sensory Studies, 20, 285–300.

    Google Scholar 

  • Ledauphin, S., Vigneau, E. and Qannari, E. M. 2006. A procedure for analysis of time intensity curves. Food Quality and Preference, 17, 290–295.

    Google Scholar 

  • Lee, C. B. and Lawless, H. T. 1991. Time-course of astringent materials. Chemical Senses, 16, 225–238.

    Google Scholar 

  • Lee, W. E. 1985. Evaluation of time–intensity sensory responses using a personal computer. Journal of Food Science, 50, 1750–1751.

    Google Scholar 

  • Lee, W. E. 1986. A suggested instrumental technique for studying dynamic flavor release from food products. Journal of Food Science, 51, 249–250.

    Google Scholar 

  • Lee, W. E. 1989. Single-point vs. time–intensity sensory measurements: An informational entropy analysis. Journal of Sensory Studies, 4, 19–30.

    Google Scholar 

  • Lee, W. E. and Pangborn, R. M. 1986. Time–intensity: The temporal aspects of sensory perception. Food Technology, 40, 71–78, 82.

    Google Scholar 

  • Liu, Y. H. and MacFie, H. J. H. 1990. Methods for averaging time–intensity curves. Chemical Senses, 15, 471–484.

    Google Scholar 

  • Lundahl, D. S. 1992. Comparing time–intensity to category scales in sensory evaluation. Food Technology, 46(11), 98–103.

    Google Scholar 

  • Lynch, J., Liu, Y.-H., Mela, D. J. and MacFie, H. J. H. 1993. A time–intensity study of the effect of oil mouthcoatings on taste perception. Chemical Senses, 18, 121–129.

    CAS  Google Scholar 

  • Matysiak, N. L. and Noble, A. C. 1991. Comparison of temporal perception of fruitiness in model systems sweetened with aspartame, aspartame + acesulfame K blend or sucrose. Journal of Food Science, 65, 823–826.

    Google Scholar 

  • McBurney, D. H. 1966. Magnitude estimation of the taste of sodium chloride after adaptation to sodium chloride. Journal of Experimental Psychology, 72, 869–873.

    Google Scholar 

  • McBurney, D. H. and Shick, T. R. 1971. Taste and water taste of 26 compounds for man. Perception and Psychophysics, 11, 228–232.

    Google Scholar 

  • McGowan, B. A. and Lee, S.-Y. 2006. Comparison of methods to analyze time–intensity curves in a corn zein chewing gum study. Food Quality and Preference 17, 296–306.

    Google Scholar 

  • McNulty, P. B. 1987. Flavour release—elusive and dynamic. In: J. M. V. Blanshard and P. Lillford (eds.), Food Structure and Behavior. Academic, London, pp. 245–258.

    Google Scholar 

  • McNulty, P. B. and Moskowitz, H. R. 1974. Intensity -time curves for flavored oil-in-water emulsions. Journal of Food Science, 39, 55–57.

    CAS  Google Scholar 

  • Meiselman, H. L. 1968. Magnitude estimation of the time course of gustatory adaptation. Perception and Psychophysics, 4, 193–196.

    Google Scholar 

  • Meiselman, H. L. and Dubose, C. N. 1976. Failure of instructional set to affect completeness of taste adaptation. Perception and Psychophysics, 19, 226–230.

    Google Scholar 

  • Meiselman, H. L. and Halpern, B. P. 1973. Enhancement of taste intensity through pulsatile stimulation. Physiology and Behavior, 11, 713–716.

    CAS  Google Scholar 

  • Moore, L. J. and Shoemaker, C. F. 1981. Sensory textural properties of stabilized ice cream. Journal of Food Science, 46, 399–402, 409.

    CAS  Google Scholar 

  • Neilson, A. J. 1957. Time–intensity studies. Drug and Cosmetic Industry, 80, 452–453, 534.

    Google Scholar 

  • O’Keefe, S. F., Resurreccion, A. P., Wilson, L. A. and Murphy, P. A. 1991. Temperature effect on binding of volatile flavor compounds to soy protein in aqueous model systems. Journal of Food Science, 56, 802–806.

    Google Scholar 

  • O’Mahony, M. 1986. Sensory adaptation. Journal of Sensory Studies, 1, 237–257.

    Google Scholar 

  • O’Mahony, M. and Wong, S.-Y. 1989. Time–intensity scaling with judges trained to use a calibrated scale: Adaptation, salty and umami tastes. Journal of Sensory Studies, 3, 217–236.

    Google Scholar 

  • Ott, D. B., Edwards, C. L. and Palmer, S. J. 1991. Perceived taste intensity and duration of nutritive and non-nutritive sweeteners in water using time–intensity (T–I) evaluations. Journal of Food Science, 56, 535–542.

    CAS  Google Scholar 

  • Overbosch, P. 1987. Flavour release and perception. In: M. Martens, G. A. Dalen and H. Russwurm (eds.), Flavour Science and Technology. Wiley, New York, pp. 291–300.

    Google Scholar 

  • Overbosch, P., Van den Enden, J. C., and Keur, B. M. 1986. An improved method for measuring perceived intensity/time relationships in human taste and smell. Chemical Senses, 11, 315–338.

    Google Scholar 

  • Owen, W. J. and DeRouen, T. A. 1980. Estimation of the mean for lognormal data containing zeroes and left-censored values, with application to the measurement of worker exposure to air contaminants. Biometrics, 36, 707–719.

    Google Scholar 

  • Pangborn, R. M. and Koyasako, A. 1981. Time-course of viscosity, sweetness and flavor in chocolate desserts. Journal of Texture Studies, 12, 141–150.

    Google Scholar 

  • Pangborn, R. M., Lewis, M. J. and Yamashita, J. F. 1983. Comparison of time–intensity with category scaling of bitterness of iso-alpha-acids in model systems and in beer. Journal of the Institute of Brewing, 89, 349–355.

    CAS  Google Scholar 

  • Peyvieux, C. and Dijksterhuis, G. 2001. Training a sensory panel for TI: A case study. Food Quality and Preference, 12, 19–28.

    Google Scholar 

  • Pineau, N., Schlich, P., Cordelle, S., Mathonniere, C., Issanchou, S., Imbert, A., Rogeaux, M., Eteviant, P. and Köster, E. 2009. Temporal dominance of sensations: Construction of the TDS curves and comparison with time–intensity. Food Quality and Preference, 20, 450–455.

    Google Scholar 

  • Pionnier, E., Nicklaus, S., Chabanet, C., Mioche, L., Taylor, A. J., LeQuere, J. L. and Salles, C. 2004. Flavor perception of a model cheese: relationships with oral and physico-chemical parameters. Food Quality and Preference, 15, 843–852.

    Google Scholar 

  • Prescott, J. and Stevenson, R. J. 1996. Psychophysical responses to single and multiple presentations of the oral irritant zingerone: Relationship to frequency of chili consumption. Physiology and Behavior, 60–617–624.

    Google Scholar 

  • Reinbach, H. C., Toft, M. and Møller, P. 2009. Relationship between oral burn and temperature in chili spiced pork patties evaluated by time–intensity. Food Quality and Preference, 20, 42–49.

    Google Scholar 

  • Reinbach, H. C., Meinert, L., Ballabio, D., Aayslyng, M. D., Bredie, W. L. P., Olsen, K. and Møller, P. 2007. Interactions between oral burn, meat flavor and texture in chili spiced pork patties evaluated by time–intensity. Food Quality and Preference, 18, 909–919.

    Google Scholar 

  • Rine, S. D. 1987. Computerized analysis of the sensory properties of peanut butter. M. S. Thesis, University of California, Davis, USA.

    Google Scholar 

  • Roberts, D. D. and Acree, T. E. 1996. Simulation of retronasal aroma using a modified headspace technique: Investigating the effects of saliva, temperature, shearing, and oil on flavor release. Journal of Agricultural and Food Chemistry, 43, 2179–2186.

    Google Scholar 

  • Roberts, D. D., Elmore, J. S., Langley, K. R. and Bakker, J. 1996. Effects of sucrose, guar gum and carboxymethylcellulose on the release of volatile flavor compounds under dynamic conditions. Journal of Agricultural and Food Chemistry, 44, 13221–1326.

    Google Scholar 

  • Robichaud, J. L. and Noble, A. C. 1990. Astringency and bitterness of selected phenolics in wine. Journal of the Science of Food and Agriculture, 53, 343–353.

    CAS  Google Scholar 

  • Rosin, S. and Tuorila, H. 1992. Flavor potency of garlic, pepper and their combination in different dispersion media. Lebensmittel Wissenschaft und Technologie, 25, 139–142.

    Google Scholar 

  • Rozin, P., Ebert, L. and Schull, J. 1982. Some like it hot: A temporal analysis of hedonic responses to chili pepper. Appetite, 3, 13–22.

    CAS  Google Scholar 

  • Shamil, S., Wyeth, L. J. and Kilcast, D. 1992. Flavour release and perception in reduced-fat foods. Food Quality and Preference, 3, 51–60.

    Google Scholar 

  • Sjostrom, L. B. 1954. The descriptive analysis of flavor. In: Food Acceptance Testing Methodology, Quartermaster Food and Container Institute, Chicago, pp. 4–20.

    Google Scholar 

  • Stevens, D. A. and Lawless, H. T. 1986. Putting out the fire: Effects of tastants on oral chemical irritation. Perception and Psychophysics, 39, 346–350.

    CAS  Google Scholar 

  • Swartz, M. 1980. Sensory screening of synthetic sweeteners using time–intensity evaluations. Journal of Food Science, 45, 577–581.

    Google Scholar 

  • Taylor, D. E. and Pangborn, R. M. 1990. Temporal aspects of hedonic response. Journal of Sensory Studies, 4, 241–247.

    CAS  Google Scholar 

  • Tuorila, H. and Vainio, L. 1993. Perceived saltiness of table spreads of varying fat compositions. Journal of Sensory Studies, 8, 115–120.

    Google Scholar 

  • time–intensity van Buuren, S. 1992. Analyzing time–intensity responses in sensory evaluation. Food Technology, 46(2), 101–104.

    Google Scholar 

  • Veldhuizen, M. G., Wuister, M. J. P. and Kroeze, J. H. A. 2006. Temporal aspects of hedonic and intensity responses. Food Quality and Preference, 17, 489–496.

    Google Scholar 

  • Wendin, K., Janestad, H. and Hall, G. 2003. Modeling and analysis of dynamic sensory data. Food Quality and Preference, 14, 663–671.

    Google Scholar 

  • Yoshida, M. 1986. A microcomputer (PC9801/MS mouse) system to record and analyze time–intensity curves of sweetness. Chemical Senses, 11, 105–118.

    Google Scholar 

  • Zimoch, J. and Gullett, E. A. 1997. Temporal aspects of perception of juiciness and tenderness of beef. Food Quality and Preference, 8, 203–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lawless, H., Heymann, H. (2010). Time–Intensity Methods. In: Sensory Evaluation of Food. Food Science Text Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6488-5_8

Download citation

Publish with us

Policies and ethics