Physiological and Psychological Foundations of Sensory Function

  • Harry T. Lawless
  • Hildegarde Heymann
Part of the Food Science Text Series book series (FSTS)


This chapter reviews background material underpinning sensory science and sensory evaluation methodologies. Basic and historical psychophysical methods are reviewed as well as the anatomy, physiology, and function of the chemical senses. The chapter concludes with a discussion of multi-modal sensory interactions.


Olfactory Receptor Taste Receptor Difference Threshold Sour Taste Odor Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albin, K. C., Carstens, M. I. and Carstens, E. 2008. Modulation of oral heat and cold pain by irritant chemicals. Chemical Senses, 33, 3–15.Google Scholar
  2. Amoore, J. E. 1971. Olfactory genetics and anosmia. In: L. M. Beidler (ed.), Handbook of Sensory Physiology. Springer, Berlin, pp. 245–256.Google Scholar
  3. Amoore, J. E. and Forrester, L. J. 1976. The specific anosmia to trimethylamine: The fishy primary odor. Journal of Chemical Ecology, 2, 49–56.Google Scholar
  4. Amoore, J. E., Forrester, L. J. and Pelosi, P. 1976. Specific anosmia to isobutyraldehyde: The malty primary odor. Chemical Senses, 2, 17–25.Google Scholar
  5. Amoore, J. E., Venstrom, D. and Davis, A. R. 1968. Measurement of specific anosmia. Perceptual and Motor Skills, 26, 143–164.Google Scholar
  6. Andersen, R. K., Lund, J. P. and Puil, E. 1978. Enkephalin and substance P effects related to trigeminal pain. Canadian Journal of Physiology and Pharmacology, 56, 216–222.Google Scholar
  7. Anderson, N. 1974. Algebraic models in perception. In: E. C. Carterette and M. P. Friedman (eds.), Handbook of Perception. II. Psychophysical Judgment and Measurement. Academic, New York, pp. 215–298.Google Scholar
  8. Arvidson, K. 1979. Location and variation in number of taste buds in human fungiform papillae. Scand. Journal of Dental Research, 87, 435–442.Google Scholar
  9. ASTM 1989. Standard definitions of terms relating to sensory evaluation of materials and products. In Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, p. 2.Google Scholar
  10. Ayya, N. and Lawless, H. T. 1992. Qualitative and quantitative evaluation of high-intensity sweeteners and sweetener mixtures. Chemical Senses, 17, 245–259.Google Scholar
  11. Bachmanov, A. A. and Beauchamp, G. K. 2007. Taste receptor genes. Annual Review of Nutrition, 27, 389–414.Google Scholar
  12. Bartoshuk, L. M. 1978. History of taste research. In: E. C. Carterette and M. P. Friedman (eds.), Handbook of Perception. IVA, Tasting and Smelling. Academic, New York, pp. 2–18.Google Scholar
  13. Bartoshuk, L. M. 1979. Bitter taste of saccharin related to the genetic ability to taste the bitter substance 6-N-Propylthiouracil. Science, 205, 934–935.Google Scholar
  14. Bartoshuk, L. M., Cain, W. S., Cleveland, C. T., Grossman, L. S., Marks, L. E., Stevens, J. C. and Stolwijk, J. A. 1974. Saltiness of monosodium glutamate and sodium intake. Journal of the American Medical Association, 230, 670.Google Scholar
  15. Bartoshuk, L. M., Duffy, V. B. and Miller, I. J. 1994. PTC/PROP tasting: Anatomy, psychophysics and sex effects. Physiology and Behavior, 56, 1165–1171.Google Scholar
  16. Bartoshuk, L. M., Murphy, C. L. and Cleveland, C. T. 1978. Sweet taste of dilute NaCl. Physiology and Behavior, 21, 609–613.Google Scholar
  17. Bate Smith, E. C. 1954. Astrigency in foods. Food Processing and Packaging, 23, 124–127.Google Scholar
  18. Beidler, L. M. 1961. Biophysical approaches to taste. American Scientist, 49, 421–431.Google Scholar
  19. Bingham, A. F., Birch, G. G., de Graaf, C., Behan, J. M. and Perring, K. D. 1990. Sensory studies with sucrose-maltol mixtures. Chemical Senses, 15, 447–456.Google Scholar
  20. Birnbaum, M. H. 1982. Problems with so called “direct” scaling. In: J. T. Kuznicki, A. F. Rutkiewic and R. A. Johnson (eds.), Problems and Approaches to Measuring Hedonics (ASTM STP 773). American Society for Testing and Materials, Philadelphia, pp. 34–48.Google Scholar
  21. Blakeslee, A. F. 1932. Genetics of sensory thresholds: Taste for phenylthiocarbamide. Proceedings of the National Academy of Science USA, 18, 120–130.Google Scholar
  22. Boring, E. G. 1942. Sensation and Perception in the History of Experimental Psychology. Appleton-Century-Crofts, New York.Google Scholar
  23. Brennand, C. P., Ha, J. K. and Lindsay, R. C. 1989. Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milkfat and meat lipids. Journal of Sensory Studies, 4, 105–120.Google Scholar
  24. Breslin, P. A. S. and Beauchamp, G. K. 1997. Salt enhances flavour by suppressing bitterness. Nature, 387, 563.Google Scholar
  25. Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K. and Green, B. G. 1993. Psychophysical evidence that oral astringency is a tactile sensation. Chemical Senses, 18, 405–417.Google Scholar
  26. Brud, W. S. 1986. Words versus odors: How perfumers communicate. Perfumer and Flavorist, 11, 27–44.Google Scholar
  27. Buck, L. and Axel, R. 1991. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65, 175–187.Google Scholar
  28. Buettner, A., Beer, A., Hannig, C., Settles, M. and Schieberle, P. 2002. Physiological and analytical studies on flavor perception dynamics as induced by the eating and swallowing process. Food Quality and Preference, 13, 497–504.Google Scholar
  29. Bufe, B., Breslin, P. A. S., Kuhn, C., Reed, D. R., Tharp, C. D., Slack, J. P., Kim, U.-K., Drayna, D. and Meyerhof, W. 2005. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Current Biology, 15, 322–327.Google Scholar
  30. Burgard, D. R. and Kuznicki, J. T. 1990. Chemometrics: Chemical and Sensory Data. CRC, Boca Raton.Google Scholar
  31. Burks, T. F., Buck, S. H. and Miller, M. S. 1985. Mechanisms of depletion of substance P by capsaicin. Federation Proceedings, 44, 2531–2534.Google Scholar
  32. Cagan, R. H. 1981. Recognition of taste stimuli at the initial binding interaction. In: R. H. Cagan and M. R. Kare (eds.), Biochemistry of Taste and Olfaction. Academic, New York, pp. 175–204.Google Scholar
  33. Cain, W. S. 1977. Differential sensitivity for smell: “Noise” at the nose. Science, 195 (25 February), 796–798.Google Scholar
  34. Cain, W. S. 1979. To know with the nose: Keys to odor identification. Science, 203, 467–470.Google Scholar
  35. Cain, W. S. and Drexler, M. 1974. Scope and evaluation of odor counteraction and masking. Annals of the New York Academy of Sciences, 237, 427–439.Google Scholar
  36. Cain, W. S. and Engen, T. 1969. Olfactory adaptation and the scaling of odor intensity. In: C. Pfaffmann (ed.), Olfaction and Taste III. Rockefeller University, New York, pp. 127–141.Google Scholar
  37. Cain, W. S. and Murphy, C. L. 1980. Interaction between chemoreceptive modalities of odor and irritation. Nature, 284, 255–257.Google Scholar
  38. Calixto, J. B., Kassuya, C. A., Andre, E. and Ferreira, J. 2005. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacology & Therapeutics, 106, 179–208.Google Scholar
  39. Caul, J. F. 1957. The profile method of flavor analysis. Advances in Food Research, 7, 1–40.Google Scholar
  40. Chandrashekar, J., Yarmolinksy, D., von Buchholtz, L., Oka, Y., Sly, W., Ryba, N. J. P. and Zuker, C. S. 2009. The taste of carbonation. Science, 326, 443–445.Google Scholar
  41. Chastrette, M., Elmouaffek, E. and Sauvegrain, P. 1988. A multidimensional statistical study of similarities between 74 notes used in perfumery. Chemical Senses, 13, 295–305.Google Scholar
  42. Civille, G. L. and Lawless, H. T. 1986. The importance of language in describing perceptions. Journal of Sensory Studies, 1, 203–215.Google Scholar
  43. Civille, G. V. and Lyon, B. G. 1996. Aroma and Flavor Lexicon for Sensory Evaluation. ASTM DS 66. American Society for Testing and Materials, West Coshohocken, PA.Google Scholar
  44. Cliff, M. and Heymann, H. 1992. Descriptive analysis of oral pungency. Journal of Sensory Studies, 7, 279–290.Google Scholar
  45. Clifford, M. N. 1986. Phenol-protein interactions and their possible significance for astringency. In: Birch, G. G. and M. G. Lindley (eds.), Interactions of Food Components. Elsevier, London, pp. 143–163.Google Scholar
  46. Collings, V. B. 1974. Human taste response as a function of locus on the tongue and soft palate. Perception & Psychophysics, 16, 169–174.Google Scholar
  47. Cometto-Muñiz, J. E. and Cain, W. S. 1984. Temporal integration of pungency. Chemical Senses, 8, 315–327.Google Scholar
  48. Commetto-Muñiz, J. E. and Hernandez, S. M. 1990. Odorous and pungent attributes of mixed and unmixed odorants. Perception & Psychophysics, 47, 391–399.Google Scholar
  49. Condelli, N., Dinnella, C., Cerone, A., Monteleone, E. and Bertucciolo, M. 2006. Prediction of perceived astringency induced by phenolic compounds II: Criteria for panel selection and preliminary application on wine samples. Food Quality and Preference, 17, 96–107.Google Scholar
  50. Cowart, B. J. 1987. Oral chemical irritation: Does it reduce perceived taste intensity? Chemical Senses, 12, 467–479.Google Scholar
  51. Cowart, B. J. 1998. The addition of CO2 to traditional taste solutions alters taste quality. Chemical Senses, 23, 397–402.Google Scholar
  52. Curtis, D. W., Stevens, D. A. and Lawless, H. T. 1984. Perceived intensity of the taste of sugar mixtures and acid mixtures. Chemical Senses, 9, 107–120.Google Scholar
  53. Da Conceicao Neta, E. R., Johanningsmeier, S. D. and McFeeters, R. F. 2007. The chemistry and physiology of sour taste – A review. Journal of Food Science, 72, R33–R38.Google Scholar
  54. Dalton, P., Doolittle, N., Nagata, H. and Breslin, P. A. S. 2000. The merging of the senses: Integration of subthreshold taste and smell. Nature Neuroscience, 3, 431–432.Google Scholar
  55. Delwiche, J. 2004. The impact of perceptual interactions on perceived flavor. Food Quality and Preference, 15, 137–146.Google Scholar
  56. Dessirier, J.-M., Simons, C. T., Carstens, M. I., O’Mahony, M. and Carstens, E. 2000. Psychophysical and neurobiological evidence that the oral sensation elicited by carbonated water is of chemogenic origin. Chemical Senses, 25, 277–284.Google Scholar
  57. Desor, J. A. and Beauchamp, G. K. 1974. The human capacity to transmit olfactory information. Perception & Psychophysics, 16, 551–556.Google Scholar
  58. Diamant, H., Oakley, B., Strom, L. and Zotterman, Y. 1965. A comparison of neural and psychophysical responses to taste stimuli in man. Acta Physiological Scandinavica, 64, 67–74.Google Scholar
  59. Doty, R. L. 1991. Psychophysical measurement of odor perception in humans. In: D. G. Laing, R. L. Doty and W. Breipohl (eds.), The Human Sense of Smell. Springer, Berlin, pp. 95–143.Google Scholar
  60. Doty, R. L., Brugger, W. E., Jurs, P. C., Orndorff, M. A., Snyder, P. J. and Lowry, L. D. 1978. Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans. Physiology and Behavior, 20, 175–185.Google Scholar
  61. Dravnieks, A. 1982. Odor quality: Semantically generated multidimensional profiles are stable. Science, 218, 799–801.Google Scholar
  62. Dubose, C. N., Cardello, A. V. and Maller, O. 1980. Effects of colorants and flavorants on identification, perceived flavor intensity and hedonic quality of fruit-flavored beverages and cake. Journal of Food Science, 45, 1393–1399, 1415.Google Scholar
  63. Engen, T. 1982. The Perception of Odors. Academic, New York.Google Scholar
  64. Engen, T. and Pfaffmann, C. 1959. Absolute Judgments of Odor Intensity. Journal of Experimental Psychology, 58, 23–26.Google Scholar
  65. Engen, T. and Ross, B. 1973. Long term memory for odors with and without verbal descriptors. Journal of Experimental Psychology, 100, 221–227.Google Scholar
  66. Epke, E., McClure, S. T. and Lawless, H. T. 2008. Effects of nasal occlusion and oral contact on perception of metallic taste from metal salts. Food Quality and Preference, 20, 133–137.Google Scholar
  67. Farbman, A. I. and Hellekant, G. 1978. Quantitative analyses of fiber population in rat chorda tympani nerves and fungiform papillae. American Journal of Anatomy, 153, 509–521.Google Scholar
  68. Fechner, G. T. 1966 (translation, orig. 1860). Elements of Psychophysics. E. H. Adler (trans.). D. H. Howes and E. G. Boring (eds.), Holt, Rinehart and Winston, New York.Google Scholar
  69. Firestein, S. 2001. How the olfactory system makes senses of scents. Nature, 413, 211–218.Google Scholar
  70. Fisher, U., Boulton, R. B. and Noble, A. C. 1994. Physiological factors contributing to the variability of sensory assessments: Relationship between salivary flow rate and temporal perception of gustatory stimuli. Food Quality and Preference, 5, 55–64.Google Scholar
  71. Fox, A. L. 1932. The relationship between chemical constitution and taste. Proceedings of the National Academy of Sciences USA, 18, 115–120.Google Scholar
  72. Frank, R. A. and Byram, J. 1988. Taste-smell interactions are tastant and odorant dependent. Chemical Senses, 13, 445.Google Scholar
  73. Frank, R. A., Ducheny, K. and Mize, S. J. S. 1989a. Strawberry odor, but not red color enhances the sweetness of sucrose solutions. Chemical Senses, 14, 371.Google Scholar
  74. Frank, R. A., Mize, S. J. and Carter, R. 1989b. An Assessment of binary mixture interactions for nine sweeteners. Chemical Senses, 14, 621–632.Google Scholar
  75. Frank, R. A., van der Klaauw, N. J. and Schifferstein, H. N. J. 1993. Both perceptual and conceptual factors influence taste-odor and taste-taste interactions. Perception and Psychophysics, 54, 343–354.Google Scholar
  76. Frank, R. A., Wessel, N. and Shaffer, G. 1990. The enhancement of sweetness by strawberry odor is instruction dependent. Chemical Senses, 15, 576–577.Google Scholar
  77. Goldstein, E. B. 1999. Sensation & Perception, Fifth Edition. Brooks/Cole Publishing, Pacific Grove, CA.Google Scholar
  78. Goldstein, E. B. (ed.). 2001. Handbook of Perception. Blackwell Publishers, Inc., Malden, MA.Google Scholar
  79. Green, B. G. 1985. Menthol modulates oral sensations of warmth and cold. Physiology and Behavior, 35, 427–434.Google Scholar
  80. Green, B. G. 1986. Menthol inhibits the perception of warmth. Physiology and Behavior, 38, 833–838.Google Scholar
  81. Green, B. G. 1989. Capsaicin sensitization and desensitization on the tongue produced by brief exposures to a low concentration. Neuroscience Letters, 107, 173–178.Google Scholar
  82. Green, B. G. 1992. The effects of temperature and concentration on the perceived intensity and quality of carbonation. Chemical Senses, 17, 435–450.Google Scholar
  83. Green, B. G. and Gelhard, B. 1989. Salt as an oral irritant. Chemical Senses, 14, 259–271.Google Scholar
  84. Green, B. G. and Lawless, H. T. 1991. The psychophysics of somatosensory chemoreception in the nose and mouth. In: T. V. Getchell, L. M. Bartoshuk, R. L. Doty and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, NY, pp. 235–253.Google Scholar
  85. Green, B. G., Alvarez-Reeves, M., Pravin, G. and Akirav, C. 2005. Chemesthesis and taste: Evidence of independent processing of sensation intensity. Physiology and Behavior, 86, 526–537.Google Scholar
  86. Greer, C. A. 1991. Structural organization of the olfactory system. In: T. V. Getchell, R. L. Doty, L. M. Bartoshuk and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, pp. 65–81.Google Scholar
  87. Grushka, M. and Sessle, B. J. 1991. Burning mouth syndrome. In: T. V. Getchell, R. L. Doty, L. M. Bartoshuk and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, NY, pp. 665–682.Google Scholar
  88. Guinard, J.-X., Pangborn, R. M. and Lewis, M. J. 1986. The time course of astringency in wine upon repeated ingestion. American Journal of Enology and Viticulture, 37, 184–189.Google Scholar
  89. Gwartney, E. and Heymann, H. 1995. The temporal perception of menthol. Journal of Sensory Studies, 10, 393–400.Google Scholar
  90. Gwartney, E. and Heymann, H. 1996. Profiling to describe the sensory characteristics of a simple model menthol solution. Journal of Sensory Studies, 11, 39–48.Google Scholar
  91. Hall, M. L., Bartoshuk, L. M., Cain, W. S. and Stevens, J. C. 1975. PTC taste blindness and the taste of caffeine. Nature, 253, 442–443.Google Scholar
  92. Halpern, B. P. 2008. Mechanisms and consequences of retronasal smelling: Computational fluid dynamic observations and psychophysical observations. Chemosense, 10, 1–8.Google Scholar
  93. Harper, S. J. and McDaniel, M. R. 1993. Carbonated water lexicon: Temperature and CO2 level influence on descriptive ratings. Journal of Food Science, 58, 893–898.Google Scholar
  94. Hernandez, S. V. and Lawless, H. T. 1999. A method of adjustment for preference levels of capsaicin in liquid and solid food systems among panelists of two ethnic groups. Food Quality and Preference 10, 41–49.Google Scholar
  95. Hewson, L., Hollowood, T., Chandra, S. and Hort, J. 2009. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2, 94–107.Google Scholar
  96. Hobbes, T. 1651. M. Oakeshott (ed.), Leviathan: Or the Matter, Forme and Power of a Commonwealth Ecclesiastical and Civil. Collier Books, New York, NY, 1962 edition.Google Scholar
  97. Horne, J., Hayes, J. and Lawless, H. T. 2002. Turbidity as a measure of salivary protein reactions with astringent substances. Chemical Senses, 27, 653–659.Google Scholar
  98. Hornung, D. E. and Enns, M.P. 1984. The independence and integration of olfaction and taste. Chemical Senses, 9, 97–106.Google Scholar
  99. Hornung, D. E. and Enns, M. P. 1986. The contributions of smell and taste to overall intensity: A model. Perception and Psychophysics, 39, 385–391.Google Scholar
  100. Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M. and Matsunami, H. 2006. Transient receptor potential family members PDK1L3 and PKD2L1 form a candidate sour taste receptor. Proceedings of the National Academy of Science, 103, 12569–12574.Google Scholar
  101. Jansco, N. 1960. Role of the nerve terminals in the mechanism of inflammatory reactions. Bulletin of Millard Fillmore Hospital, Buffalo, 7, 53–77.Google Scholar
  102. Jeltema, M. A. and Southwick, E. W. 1986. Evaluations and application of odor profiling. Journal of Sensory Studies, 1, 123–136.Google Scholar
  103. Kallikathraka, S., Bakker, J., Clifford, M. N. and Vallid, L. 2001. Correlations between saliva composition and some T-I parameters of astringency. Food Quality and Preference, 12, 145–152.Google Scholar
  104. Karrer, T. and Bartoshuk, L. M. 1995. Effects of capsaicin desensitization on taste in humans. Physiology & Behavior, 57, 421–429.Google Scholar
  105. Kauer, J. S. 1987. Coding in the olfactory system. In: T. E. Finger and W. L. Silver (eds.), Neurobiology of Taste and Smell, Wiley, New York, NY, pp. 205–231.Google Scholar
  106. Kawamura, Y. and Kare, M. R. 1987. Umami: A Basic Taste. Marcel Dekker, New York.Google Scholar
  107. Kim, U.-K., Jorgenson, E., Coon, H. Leppert, M.. Risch, N. and Drayna, D. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science, 299, 1221–1225.Google Scholar
  108. Kroeze, J. H. A. 1979. Masking and adaptation of sugar sweetness intensity. Physiology and Behavior, 22, 347–351.Google Scholar
  109. Kroeze, J. H. A. and Bartoshuk, L. M. 1985. Bitterness suppression as revealed by split-tongue taste stimulation in humans. Physiology and Behavior, 35, 779–783.Google Scholar
  110. Labbe, D. and Martin, N. 2009. Impact of novel olfactory stimuli and subthreshold concentrations on the perceived sweetness of sucrose after associative learning. Chemical Senses, 34, 645–651.Google Scholar
  111. Laing, D. G., Livermore, B. A. and Francis, G. W. 1991. The human sense of smell has a limited capacity for identifying odors in mixtures. Chemical Senses, 16, 392.Google Scholar
  112. Laing, D. G. and Willcox, M. E. 1983. perception of components in binary odor mixtures. Chemical Senses, 7, 249–264.Google Scholar
  113. Laska, M. and Hudson, R. 1992. Ability to discriminate between related odor mixtures. Chemical Senses, 17, 403–415.Google Scholar
  114. Lavin, J. and Lawless, H. T. 1998. Effects of color and odor on judgments of sweetness among children and adults, Food Quality and Preference, 9, 283–289.Google Scholar
  115. Lawless, H. 1977. The pleasantness of mixtures in taste and olfaction. Sensory Processes, 1, 227–237.Google Scholar
  116. Lawless, H. T. 1979. Evidence for neural inhibition in bittersweet taste mixtures. Journal of Comparative and Physiological Psychology, 93, 538–547.Google Scholar
  117. Lawless, H. T. 1980. A comparison of different methods for assessing sensitivity to the taste of phenylthiocarbamide PTC. Chemical Senses, 5, 247–256.Google Scholar
  118. Lawless, H. T. 1984. Oral chemical irritation: Psychophysical properties. Chemical Senses, 9, 143–155.Google Scholar
  119. Lawless, H. T. 1987. An olfactory analogy to release from mixture suppression in taste. Bulletin of the Psychonomic Society, 25, 266–268.Google Scholar
  120. Lawless, H. T. 1996. Flavor. In: E. C. Carterrette and M. P. Friedman (eds.), Cognitive Ecology. Academic, San Diego, pp. 325–380.Google Scholar
  121. Lawless, H. T. 1999. Descriptive analysis of complex odors: Reality, model or illusion? Food Quality and Preference, 10, 325–332.Google Scholar
  122. Lawless, H. T. and Clark, C. C. 1992. Psychological biases in time intensity scaling. Food Technology, 46(11), 81, 84–86, 90.Google Scholar
  123. Lawless, H. T. and Corrigan, C. J. 1994. Semantics of astringency. In: K. Kurihara (ed.), Olfaction and Taste XI. Proceedings of the 11th International Symposium on Olfaction and Taste and 27th Meeting, Japanese Association for Smell and Taste Sciences. Springer, Tokyo, pp. 288–292.Google Scholar
  124. Lawless, H. T. and Gillette, M. 1985. Sensory responses to oral chemical heat. In: D. D. Bills and C. J. Mussinan (eds.), Characterization and Measurement of Flavor Compounds. American Chemical Society, Washington, DC, pp. 27–42.Google Scholar
  125. Lawless, H. T. and Lee, C. B. 1994. The common chemical sense in food flavor. In: T. E. Acree and R. Teranishi (eds.), Flavor Science, Sensible Principles and Techniques. American Chemical Society, Washington, pp. 23–66.Google Scholar
  126. Lawless, H. T. and Malone, G. J. 1986. Comparisons of rating scales: Sensitivity, replicates and relative measurement. Journal of Sensory Studies, 1, 155–174.Google Scholar
  127. Lawless, H. T. and Schlegel, M. P. 1984. Direct and indirect scaling of taste – odor mixtures. Journal of Food Science, 49, 44–46.Google Scholar
  128. Lawless, H. T. and Stevens, D. A. 1984. Effects of oral chemical irritation on taste. Physiology and Behavior, 32, 995–998.Google Scholar
  129. Lawless, H. T. and Stevens, D. A. 1988. Responses by humans to oral chemical irritants as a function of locus of stimulation. Perception & Psychophysics, 43, 72–78.Google Scholar
  130. Lawless, H. T. and Stevens, D. A. 1989. Mixtures of oral chemical irritants. In: D. G. Laing, W. S. Cain, R. L. McBride and B. W. Ache (eds.), Perception of Complex Smells and Tastes. Academic Press Australia, Sydney, pp. 297–309.Google Scholar
  131. Lawless, H. T. and Stevens, D. A. 1990. Differences between and interactions of oral irritants: Neurophysiological and perceptual implications. In: B. G. Green and J. R. Mason (eds.), Chemical Irritation in the Nose and Mouth. Marcel Dekker, New York, NY, pp. 197–216.Google Scholar
  132. Lawless, H. T. and Zwillenberg, D. 1983. Clinical methods for testing taste and olfaction. Transactions of the Pennsylvania Academy of Ophthalmology and Otolaryngology, Fall, 1983, 190–196.Google Scholar
  133. Lawless, H. T., Horne, J. and Giasi, P. 1996. Astringency of acids is related to pH. Chemical Senses, 21, 397–403.Google Scholar
  134. Lawless, H. T., Rozin, P. and Shenker, J. 1985. Effects of oral capsaicin on gustatory, olfactory and irritant sensations and flavor identification in humans who regularly or rarely consumer chili pepper. Chemical Senses, 10, 579–589.Google Scholar
  135. Lawless, H. T., Thomas, C. J. C. and Johnston, M. 1995. Variation in odor thresholds for l-carvone and cineole and correlations with suprathreshold intensity ratings. Chemical Senses, 20, 9–17.Google Scholar
  136. Lawless, H. T., Antinone, M. J., Ledford, R. A. and Johnston, M. 1994. Olfactory responsiveness to diacetyl. Journal of Sensory Studies, 9, 47–56.Google Scholar
  137. Lawless, H. T., Stevens, D. A., Chapman, K. W. and Kurtz, A. 2005. Metallic taste from ferrous sulfate and from electrical stimulation. Chemical Senses, 30, 185–194.Google Scholar
  138. Lawless, H. T., Schlake, S., Smythe, J., Lim, J., Yang, H., Chapman, K. and Bolton, B. 2004. Metallic taste and retronasal smell. Chemical Senses 29, 25–33.Google Scholar
  139. Lee, C. B. and Lawless, H. T. 1991. Time-course of astringent sensations. Chemical Senses, 16, 225–238.Google Scholar
  140. Leffingwell, J. C. 2009. Cool without menthol and cooler than menthol. Leffingwell and Associates.
  141. Lehninger, A. L. 1975. Biochemistry, Second Edition. Worth Publishers, New York.Google Scholar
  142. Lubran, M. B., Lawless, H. T., Lavin, E. and Acree, T. E. 2005. Identification of metallic-smelling 1 octen-3-one and 1-nonen-3-one from solutions of ferrous sulfate. Journal of Agricultural and Food Chemistry, 53, 8325–8327.Google Scholar
  143. Malnic, B., Hirono, J., Sato, T. and Buck, L. B. 1999. Combinatorial receptor codes for odors. Cell, 96, 713–723.Google Scholar
  144. Marin, A. B., Acree, T. E. and Hotchkiss, J. 1987. Effects of orange juice packaging on the aroma of orange juice. Paper presented at the 194th ACS National Meeting, New Orleans, LA, 9/87.Google Scholar
  145. Marin, A. B., Barnard, J., Darlington, R. B. and Acree, T. E. 1991. Sensory thresholds: Estimation from dose-response curves. Journal of Sensory Studies, 6(4), 205–225.Google Scholar
  146. Mattes, R. D. and Lawless, H. T. 1985. An adjustment error in optimization of taste intensity. Appetite, 6, 103–114.Google Scholar
  147. McBride, R. L. 1983. A JND-scale/category scale convergence in taste. Perception & Psychophysics, 34, 77–83.Google Scholar
  148. McBride, R. L. 1987. Taste psychophysics and the Beidler equation. Chemical Senses, 12, 323–332.Google Scholar
  149. McBurney, D. H. 1966. Magnitude estimation of the taste of sodium chloride after adaptation to sodium chloride. Journal of Experimental Psychology, 72, 869–873.Google Scholar
  150. McBurney, D. H. and Bartoshuk, L. M. 1973. Interactions between stimuli with different taste qualities. Physiology and Behavior, 10, 1101–1106.Google Scholar
  151. McBurney, D. H. and Shick, T. R. 1971. Taste and water taste of 26 compounds for man. Perception & Psychophysics, 11, 228–232.Google Scholar
  152. McClure, S. T. and Lawless, H. T. 2007. A comparison of two electric taste stimulation devices, metallic taste responses and lateralization of taste. Physiology and Behavior, 92, 658–664.Google Scholar
  153. McManus, J. P., Davis, K. G., Lilley, T. H. and Halsam, E. 1981. Polyphenol interactions. Journal of the Chemical Society, Chemical Communications, 309–311.Google Scholar
  154. Meilgaard, M. C., Reid, D. S. and Wyborski, K. A. 1982. Reference standards for beer flavor terminology system. Journal of the American Society of Brewing Chemists, 40, 119–128.Google Scholar
  155. Meiselman, H. L. 1971. Effect of presentation procedure on taste intensity functions. Perception and Psychophysics, 10, 15–18.Google Scholar
  156. Meiselman, H. L. and Halpern, B. P. 1973. Enhancement of taste intensity through pulsatile stimulation. Physiology and Behavior, 11, 713–716.Google Scholar
  157. Miller, I. J. and Bartoshuk, L. M. 1991. Taste perception, taste bud distribution and spatial relationships. In: T. V. Getchell, R. L. Doty, L. M. Bartoshuk and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, pp. 205–233.Google Scholar
  158. Miller, I. J. and Spangler, K. M. 1982. Taste bud distribution and innervation on the palate of the rat. Chemical Senses, 7, 99–108.Google Scholar
  159. Moio, L., Langlois, D., Etievant, P. X. and Addeo, F. 1993. Powerful odorants in water buffalo and bovine mozzarella cheese by use of extract dilution sniffing analysis. Italian Journal of Food Science, 3, 227–237.Google Scholar
  160. Morrot, G., Brochet, F. and Dubourdieu, D. 2001. The color of odors. Brain & Language, 79, 309–320.Google Scholar
  161. Moskowitz, H. R. 1971. The sweetness and pleasantness of sugars. American Journal of Psychology, 84, 387–405.Google Scholar
  162. Murray, N. J., Williamson, M. P., Lilley, T. H. and Haslam, E. 1994. Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. European Journal of Biochemistry, 219, 923–935.Google Scholar
  163. Murphy, C. and Cain, W. S. 1980. Taste and olfaction: Independence vs. interaction. Physiology and Behavior, 24, 601–605.Google Scholar
  164. Murphy, C., Cain, W. S. and Bartoshuk, L. M. 1977. Mutual action of taste and olfaction. Sensory Processes, 1, 204–211.Google Scholar
  165. Nagodawithana, T. W. 1995. Savory Flavors. Esteekay Associates, Milwaukee, WI.Google Scholar
  166. Nejad, M. S. 1986. The neural activities of the greater superficial petrosal nerve of the rat in response to chemical stimulation of the palate. Chemical Senses, 11, 283–293.Google Scholar
  167. Noble, A. C., Arnold, R. A., Buechsenstein, J., Leach, E. J., Schmidt, J. O. and Stern, P. M. 1987. Modification of a standardized system of wine aroma terminology. American Journal of Enology and Viticulture, 38(2), 143–146.Google Scholar
  168. O’Mahony, M. and Ishii, R. 1986. Umami taste concept: Implications for the dogma of four basic tastes. In: Y. Kawamura and M. R. Kare (eds.), Umami: A Basic Taste. Marcel Dekker, New York, NY, pp. 75–93.Google Scholar
  169. Pangborn, R. M. 1988. Relationship of personal traits and attitudes to acceptance of food attributes. In: J. Solms, D. A. Booth, R. M. Pangborn and O. Rainhardt (eds.), Food Acceptance and Nutrition. Academic, New York, NY, pp. 353–370.Google Scholar
  170. Pangborn, R. M. and Braddock, K. S. 1989. Ad libitum preferences for salt in chicken broth. Food Quality and Preference, 1, 47–52.Google Scholar
  171. Pangborn, R. M. and Dunkley, W. L. 1964. Laboratory procedures for evaluating the sensory properties of milk. Dairy Science Abstracts, 26, 55–62.Google Scholar
  172. Patapoutian, A., Peier, A. M., Story, G. M. and Viswanath, V. 2003. TermoTRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews/Neuroscience, 4, 529–539.Google Scholar
  173. Patel, T., Ishiuji, Y. and Yosipovitch, G. 2007. Menthol: A refreshing look at this ancient compound. Journal of the American Academy of Dermatology, 57, 873–878.Google Scholar
  174. Pelosi, P. and Pisanelli, A. M. 1981. Specific anosmia to 1,8-cineole: The camphor primary odor. Chemical Senses, 6, 87–93.Google Scholar
  175. Pelosi, P. and Viti, R. 1978. Specific anosima to I-carvone: The minty primary odour. Chemical Senses and Flavour, 3, 331–337.Google Scholar
  176. Perng, C. M. and McDaniel, M. R. 1989. Optimization of a blackberry juice drink using response surface methodology. In: Institute of Food Technologists, Program and Abstracts, Annual Meeting. Institute of Food Technologists, Chicago, IL, p. 216.Google Scholar
  177. Philips, L. G., McGiff, M. L., Barbano, D. M. and Lawless, H. T. 1995. The influence of nonfat dry milk on the sensory properties, viscosity and color of lowfat milks. Journal of Dairy Science, 78, 2113–2118.Google Scholar
  178. Prescott, J. 1999. Flavour as a psychological construct: Implications for perceiving and measuring the sensory qualities of foods. Food Quality and Preference, 10, 349–356.Google Scholar
  179. Prescott, J. and Stevenson, R. J. 1995. Effects of oral chemical irritation on tastes and flavors in frequent and infrequent users of chili. Physiology and Behavior, 58, 1117–1127.Google Scholar
  180. Prescott, J. and Stevenson, R. J. 1996. Psychophysical responses to single and multiple presentations of the oral irritant zingerone: Relationship to frequency of chili consumption. Physiology and Behavior, 60, 617–624.Google Scholar
  181. Prescott, J. and Swain-Campbell, N. 2000. Reponses to repeated oral irritation by capsaicin, cinnamaldehyde and ethanol in PROP tasters and non-tasters. Chemical Senses, 25, 239–246.Google Scholar
  182. Prescott, J., Allen, S. and Stephens, L. 1993. Interactions between oral chemical irritation, taset and temperature. Chemical Senses, 18, 389–404.Google Scholar
  183. Prescott, J., Johnstone, V. and Francis, J. 2004. Odor/taste interactions: Effects of different attentional strategies during exposure. Chemical Senses, 29, 331–340.Google Scholar
  184. Renneccius, G. 2006. Flavor Chemistry and Technology. Taylor and Francis, Boca Raton.Google Scholar
  185. Riera, C. E., Vogel, H., Simon, S. A., Damak, S. and le Coutre, J. 2009. Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. Journal of Neuroscience, 29, 2654–2662.Google Scholar
  186. Rozin, P. 1982. “Taste-smell confusions” and the duality of the olfactory sense. Perception & Psychophysics, 31, 397–401.Google Scholar
  187. Rubico, S. M. and McDaniel, M. R. 1992. Sensory evaluation of acids by free-choice profiling. Chemical Senses, 17, 273–289.Google Scholar
  188. Schifferstein, H. N. J. and Frijters, J. E. R. 1991. The perception of the taste of KCl, NaCl and quinine HCl is not related to PROP sensitivity. Chemical Senses, 16(4), 303–317.Google Scholar
  189. Scott, T. R. and Plata-Salaman, C. R. 1991. Coding of taste quality. In: T. V. Getchell, R. L. Doty, L. M. Bartoshuk and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, NY, pp. 345–368.Google Scholar
  190. Siebert, K. 1991. Effects of protein-polyphenol interactions on beverage haze, stabilization and analysis. Journal of Agricultural and Food Chemistry, 47, 353–362.Google Scholar
  191. Silver, W. L., Roe, P., Atukorale, V., Li, W. and Xiang, B.-S. 2008. TRP channels and chemosensation. Chemosense, 10, 1, 3–6.Google Scholar
  192. Sizer, F. and Harris, N. 1985. The influence of common food additives and temperature on threshold perception of capsaicin. Chemical Senses, 10, 279–286.Google Scholar
  193. Small, D. M. and Prescott, J. 2005. Odor/taste integration and the perception of flavor. Experimental Brain Research, 166, 345–357.Google Scholar
  194. Small, D. M., Voss, J., Mak, Y. E., Simmons, K. B., Parrish, T. R. and Gitelman, D. R. 2004. Experience-dependent neural integration of taste and smell in the human brain. Journal of Neurophysiology, 92, 1892–1903.Google Scholar
  195. Sowalski, R. A. and Noble, A. C. 1998. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chemical Senses, 23, 343–349.Google Scholar
  196. Stevens, D. A. and Lawless, H. T. 1986. Putting out the fire: Effects of tastants on oral chemical irritation. Perception & Psychophysics, 39, 346–350.Google Scholar
  197. Stevens, D. A. and Lawless, H. T. 1987. Enhancement of responses to sequential presentation of oral chemical irritants. Physiology and Behavior, 39, 63–65.Google Scholar
  198. Stevens, D.A., Baker, D., Cutroni, E., Frey, A., Pugh, D. and Lawless, H. T. 2008. A direct comparison of the taste of electrical and chemical stimuli. Chemical Senses, 33, 405–413.Google Scholar
  199. Stevens, J. C., Cain, W. S. and Burke, R. J. 1988. Variability of olfactory thresholds. Chemical Senses, 13, 643–653.Google Scholar
  200. Stevens, S. S. 1957. On the psychophysical law. Psychological Review, 64, 153–181.Google Scholar
  201. Stevens, S. S. 1959. Cross-modality validation of subjective scales for loudness, vibration and electric shock. Journal of Experimental Psychology, 57, 201–209.Google Scholar
  202. Stevens, S. S. 1962. The surprising simplicity of sensory metrics. American Psychologist, 17, 29–39.Google Scholar
  203. Stevens, S. S. and Galanter, E. H. 1957. Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54, 377–411.Google Scholar
  204. Stevenson, R. J., Prescott, J. and Boakes, R. A. 1995. The acquisition of taste properties by odors. Learning and Motivation 26, 433–455.Google Scholar
  205. Stevenson, R. J., Boakes, R. A. and Prescott, J. 1998. Changes in odor sweetness resulting from implicit learning of a simultaneous odor-sweetness association: An example of learned synesthesia. Learning and Motivation, 29, 113–132.Google Scholar
  206. Stevenson, R. J., Prescott, J. and Boakes, R. A. 1999. Confusing tastes and smells: How odors can influence the perception of sweet and sour tastes. Chemical Senses, 24, 627–635.Google Scholar
  207. Stillman, J. A. 1993. Color influence flavor identification in fruit-flavored beverages. Journal of Food Science, 58, 810–812.Google Scholar
  208. Stryer, L., 1995. Biochemistry, Fourth Edition. W. H. Freeman, New York, NY.Google Scholar
  209. Sugita, M. 2006. Review. Taste perception and coding in the periphery. Cellular and Molecular Life Sciences, 63, 2000–2015.Google Scholar
  210. Szolscanyi, J. 1977. A pharmacological approach to elucidation of the role of different nerve fibers and receptor endings in mediation of pain. Journal of Physiology (Paris), 73, 251–259.Google Scholar
  211. Tai, C, Zhu, C. and Zhou, N. 2008. TRPA1: The central molecule for chemical sensing in pain pathway? The Journal of Neuroscience, 28(5):1019–1021Google Scholar
  212. Thomas, C. J. C. and Lawless, H. T. 1995. Astringent subqualities in acids. Chemical Senses, 20, 593–600.Google Scholar
  213. Tucker, D. 1971. Nonolfactory responses from the nasal cavity: Jacobson’s Organ and the trigeminal system. In: L. M. Beidler (eds.), Handbook of Sensory Physiology IV(I). Springer, Berlin, pp. 151–181.Google Scholar
  214. Tuorila, H. 1986. Sensory profiles of milks with varying fat contents. Lebensmitter Wissenschaft und Technologie, 19, 344–345.Google Scholar
  215. van der Klaauw, N. J. and Frank, R. A. 1996. Scaling component intensities of complex stimuli: The influence of response alternatives. Environment International, 22, 21–31.Google Scholar
  216. Venkatachalam, K. and Montell, C. 2007. TRP channels. Annual Reviews in Biochemistry, 76, 387–414.Google Scholar
  217. Verhagen, J. V. and Engelen, L. 2006. The neurocognitive bases of human food perception: Sensory integration. Neuroscience and Biobehavioral Reviews, 30, 613–650.Google Scholar
  218. von Sydow, E., Moskowitz, H., Jacobs, H. and Meiselman, H. 1974. Odor-taste interactions in fruit juices. Lebensmittel Wissenschaft und Technologie, 7, 18–20.Google Scholar
  219. Weiffenbach, J. M. 1991. Chemical senses in aging. In: T. V. Getchell, R. L. Doty, L. M. Bartoshuk and J. B. Snow (eds.), Smell and Taste in Health and Disease. Raven, New York, pp. 369–378.Google Scholar
  220. Whitehead, M. C., Beeman, C. S. and Kinsella, B. A. 1985. Distribution of taste and general sensory nerve endings in fungiform papillae of the hamster. American Journal of Anatomy, 173, 185–201.Google Scholar
  221. Wiseman, J. J. and McDaniel, M. R. 1989. Modification of fruit flavors by aspartame and sucrose. Institute of Food Technologists, Annual Meeting Abstracts, Chicago, IL.Google Scholar
  222. Vickers, Z. 1991. Sound perception and food quality. Journal of Food Quality, 14, 87–96.Google Scholar
  223. Wysocki, C. J. and Beauchamp, G. K. 1988. Ability to smell androstenone is genetically determined. Proceedings of the National Academy of Sciences USA, 81, 4899–4902.Google Scholar
  224. Yamaguchi, S. 1967. The synergistic taste effect of monosodium glutamate and disodium 5’inosinate. Journal of Food Science, 32, 473–475.Google Scholar
  225. Yamaguchi, S. and Kobori, I. 1994. Humans and appreciation of umami taste. Olfaction and Taste XI. In: K. Kurihara (ed.), Proceedings of the 11th International Symposium on Olfaction and Taste and 27th Meeting, Japanese Association for Smell and Taste Sciences. Springer, Tokyo, pp. 353–356.Google Scholar
  226. Yau, N. J. N. and McDaniel, M. R. 1990. The power function of carbonation. Journal of Sensory Studies, 5, 117–128.Google Scholar
  227. Yau, N. J. N. and McDaniel, M. R. 1991. The effect of temperature on carbonation perception. Chemical Senses, 16, 337–348.Google Scholar
  228. Yokomukai, Y., Cowart, B. J. and Beauchamp, G. K. 1993. Individual differences in sensitivity to bitter-tasting substances. Chemical Senses, 18, 669–681.Google Scholar
  229. Zarzo, M. and Stanton, D. T. 2006. Identification of latent variables in a semantic odor profile database using principal component analysis. Chemical Senses, 31, 713–724.Google Scholar
  230. Zellner, D. A. and Kautz, M. A. 1990. Color affects perceived odor intensity. Journal of Experimental Psychology: Human Perception and Performance, 16, 391–397.Google Scholar
  231. Zhao, H., Ivic, L., Otaki, J. M., Hashimoto, M., Mikoshiba, K. and Firestein, S. 1998. Functional expression of a mammalian odorant receptor. Science, 279, 237–242.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Harry T. Lawless
    • 1
  • Hildegarde Heymann
    • 2
  1. 1.Department of Food ScienceCornell UniversityIthacaUSA
  2. 2.Department of Viticulture and EnologyUniversity of California – DavisDavisUSA

Personalised recommendations