Advertisement

Data Relationships and Multivariate Applications

  • Harry T. Lawless
  • Hildegarde Heymann
Part of the Food Science Text Series book series (FSTS)

Abstract

Multivariate statistics have found great application in all areas of quantitative sensory science. In this chapter we will briefly describe the two major work horses in the field: principal component analysis (PCA) and canonical variate analysis (CVA). PCA should be used with mean data and CVA with raw data, namely data including replicate observations. We also discuss generalized Procrustes analysis (GPA) which is used with free-choice profiling data as well as in any situation where one may want to compare the data spaces associated with multiple data measurements on the same products. Lastly we discuss (as a preliminary to further in-depth discussion in  Chapter 19) internal and external preference mapping. We conclude by stressing that multivariate analyses should always be performed in conjunction with univariate analyses.

Keywords

Principal Component Analysis Product Space Sensory Specialist Canonical Variate Analysis Internal Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adhikari, K., Heymann, H. and Huff, H. E. 2003. Textural characteristics of lowfat, fullfat and smoked cheeses: Sensory and instrumental approaches. Food Quality and Preference, 14, 211–218.CrossRefGoogle Scholar
  2. Alves, L. R., Battochio, J. R., Cardosa, J. M. P., De Melo, L. L. M. M., Da Silva, V. S., Siqueira, A. C. P. and Bolini, H. M. A. 2008. Time-intensity profile and internal preference mapping of strawberry jam. Journal of Sensory Studies, 23, 125–135.CrossRefGoogle Scholar
  3. Alves, M. R. and Oliveira, M. B. 2005. Monitorization of consumer and naïf panels in the sensory evaluation of two types of potato chips by predictive biplots applied top generalized Procrustes and three-way Tucker-1 analysis. Journal of Chemometrics, 19, 564–574.CrossRefGoogle Scholar
  4. Anderson, T. W. 2003. An Introduction to Multivariate Statistical Analysis, Third Edition. Wiley-Interscience, Chichester, UK.Google Scholar
  5. Aparicio, J. P., Medina, M. A. T. and Rosales, V. L. 2007. Descriptive sensory analysis in different classes of orange juice by robust free-choice profile method. Analytica Chimica Acta, 595, 238–247.CrossRefGoogle Scholar
  6. Ares, G., Gimé©nez, C. and Gámbaro, A. 2009. Use of an open-ended question to identify drivers of liking of milk desserts. Comparison with preference mapping techniques. Food Quality and Preference, doi:10–1016/j.foodqual. 2009.05.006.Google Scholar
  7. Berna, A. Z., Buysens, S., Di Natale, C., Grün, I. U., Lammertyn, J. and Nicolai, B. M. 2005. Relating sensory analysis with electronic nose and headspace fingerprint MS for tomato aroma profiling. Postharvest Biology and Technology, 36, 143–155.CrossRefGoogle Scholar
  8. Bredie, W. L. P., Hassell, G. M., Guy, R. C. E. and Mottram, D. S. 1997. Aroma characteristics of extruded wheat flour and wheat starch containing added cysteine and reducing sugars. Journal of Cereal Science, 25, 57–63.CrossRefGoogle Scholar
  9. Brockhoff, P. B. 2000. Multivariate analysis of sensory data: Is CVA better than PCA? Levnedsmiddelkongres 2000, Copenhagen, Denmark.Google Scholar
  10. Busing, F. M. T. A., Heiser, W. J. and Cleaver, G. 2009. Restricted unfolding: Preference analysis with optimal transformations of preferences and attributes. Food Quality and Preference, doi:10–1016/j.foodqual.2009.08.006.Google Scholar
  11. Callier, P. and Schlich, P. 1997. La cartographie des pré©fé©rences incomplé©tes–Validation par simulation. Sciences Des Aliments, 17, 155–172.Google Scholar
  12. Cano-López, M., Bautista-Ortín, A. B., Pardo-Mínguez, F., López-Roca, J. M., Gómez-Plaza, E. 2008. Sensory descriptive analysis of red wine aged with oak chips in stainless steel tanks or used barrels: Effect of the contact time and size of the oak chips. Journal of Food Quality, 31, 645–660.CrossRefGoogle Scholar
  13. Cattell, R. B. 1966. The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.CrossRefGoogle Scholar
  14. Cattell, R. B. and Vogelmann, S. 1977. A comprehensive trial of the scree and KG criteria for determining the number of factors. Multivariate Behavioral Research, 12, 289–325.CrossRefGoogle Scholar
  15. Chatfield, C. and Collins, A. J. 1980. Introduction to Multivariate Analysis. Chapman and Hall, London.CrossRefGoogle Scholar
  16. Chung, S.-J., Heymann, H. and Grün, I. U. 2003. Application of GPA and PLSR in correlating sensory and chemical data sets. Food Quality and Preference, 14, 485–495.CrossRefGoogle Scholar
  17. Costell, E., Pastor, E. V., Izquierdo, L. 2000. Relationships between acceptability and sensory attributes of peach nectars using internal preference mapping. European Food Research and Technology, 211, 199–204.CrossRefGoogle Scholar
  18. Coxon, A. P. M. 1982. Three-way and further extensions of the basic model. The Users Guide to Multidimensional Scaling. Heinemann Educational Books, London.Google Scholar
  19. Daillant-Spinnler, B., MacFie, H. J. H., Beyts, P. K. and Hedderley, D. 1996. Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the southern hemisphere. Food Quality and Preference, 7, 113–126.CrossRefGoogle Scholar
  20. Delarue, J. and Sieffermann, J.-M. 2004. Sensory mapping using flash profile. Comparison with a conventional descriptive method for the evaluation of the flavor of fruit dairy products. Food Quality and Preference, 15, 383–392.CrossRefGoogle Scholar
  21. DeSarbo, W. S., Atalay, A. S. and Blanchard, S. J. 2009. A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences. Computational Statistics and Data Analysis, 53, 3217–3230.CrossRefGoogle Scholar
  22. Dijksterhuis, G. B. 1997. Multivariate data analysis in sensory and consumer sciences. Food and Nutrition Press, Trumbull, Connecticut, USA.Google Scholar
  23. Dijksterhuis, G. B. and Punter, P. 1990. Interpreting generalized Procrustes analysis “analysis of variance” tables. Food Quality and Preference, 2, 255–265.CrossRefGoogle Scholar
  24. Elmore, J. R., Heymann, H., Johnson, J. and Hewett, J. E. 1999. Preference mapping: Relating acceptance of ‘creaminess’ to a descriptive sensory map of a semi-solid. Food Quality and Preference, 10, 465–475.CrossRefGoogle Scholar
  25. Etaio, I., Elortondo, F. J. P., Albisu, M., Gaston, E., Ojeda, M. and Schlich, P. 2009. Sensory attribute evolution in bottled young red wines from Rioja Alavesa. European Food Research and Technology, 228, 695–705.CrossRefGoogle Scholar
  26. Etaio, I., Elortondo, F. J. P., Albisu, M., Gaston, E., Ojeda, M. and Schlich, P. 2008. Effect of winemaking process and addition of white grapes on the sensory and physicochemical characteristics of young red wines. Australian Journal of Grape and Wine Research, 14, 211–222.Google Scholar
  27. Faber, N. M., Mojet, J. and Poelman, A. A. M. 2003. Simple improvement of consumer fit in external preference mapping. Food Quality and Preference, 14, 455–461.CrossRefGoogle Scholar
  28. Faye, P., Bré©maud, D., Teillet, E., Courcoux, P., Giboreau, A. and Nicod, H. 2006. An alternative to external preference mapping based on consumer perceptive mapping. Food Quality and Preference, 17, 604–614.CrossRefGoogle Scholar
  29. Gámbaro, A., Ares, G., Gimé©nez, A. and Pahor, S. 2007. Preference mapping of color of Uruguayan honeys. Journal of Sensory Studies, 22, 507–519.CrossRefGoogle Scholar
  30. Geel, L., Kinnear, M. and de Kock, H. L. 2005. Relating consumer preferences to sensory attributes in instant coffee. Food Quality and Preference, 16, 237–244.CrossRefGoogle Scholar
  31. Gou, P., Guerrero, L. and Romero, A. 1998. The effect of panel selection and training on external preference mapping using a low number of samples. Food Science and Technology International, 4, 85–90.CrossRefGoogle Scholar
  32. Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika, 40, 33–51.CrossRefGoogle Scholar
  33. Gower, J. C. and Dijksterhuis, G. B. 2004. Procrustes Problems. Oxford Statistical Science. Oxford University Press, Oxford, UK.Google Scholar
  34. Guinard, J.-X., Souchard, A., Picot, M., Rogeaux, M. and Sieffermann, J-M. 1998. Sensory determinants of the thirst-quenching character of beer. Appetite, 31, 101–115.CrossRefGoogle Scholar
  35. Guinard, J.-X., Uotani, B. and Schlich, P. 2001. Internal and external mapping of preferences for commercial lager beers: Comparison of hedonic ratings by consumers blind versus with knowledge of brand and price. Food Quality and Preference, 12, 243–255.CrossRefGoogle Scholar
  36. Hair, J. F., Black, B., Babin, B. and Anderson, R. E. 2005. Multivariate Data Analysis, Sixth Edition. Prentice Hall, New York.Google Scholar
  37. Hatcher, L. and Stepanski, P. J. 1994. A Step-By-Step Approach to Using the SAS System for Univariate and Multivariate Statistics. SAS Institute, Cary, NC.Google Scholar
  38. Hedderley, D. and Wakeling, I. 1995. A comparison of imputation techniques for internal preference mapping, using Monte Carlo simulation. Food Quality and Preference, 6, 281–297.CrossRefGoogle Scholar
  39. Helgesen, H., Solheim, R. and Næs, T. 1997. Consumer preference mapping of dry fermented lamb sausages. Food Quality and Preference, 8, 97–109.CrossRefGoogle Scholar
  40. Heymann, H. 1994a. A comparison of free choice profiling and multidimensional scaling of vanilla samples. Journal of Sensory Studies, 9, 445–453.CrossRefGoogle Scholar
  41. Heymann, H. 1994b. A comparison of descriptive analysis of vanilla by two independently trained panels. Journal of Sensory Studies, 9, 21–32.CrossRefGoogle Scholar
  42. Heymann, H. and Noble, A. C. 1989. Comparison of canonical variate and principal component analyses. Journal of Food Science, 54, 1355–1358.CrossRefGoogle Scholar
  43. Huberty, A. J. 1984. Issues in the use and interpretation of discriminant analysis. Psychological Bulletin, 95, 156–171.CrossRefGoogle Scholar
  44. Huberty, C. J. and Morris, J. D. 1989. Multivariate analysis versus multiple univariate analyses. Psychological Bulletin, 105, 302–308.CrossRefGoogle Scholar
  45. Husson, F., Bocquet, V. and Pagés, J. 2004. Use of confidence ellipses in a PCA applied to sensory analysis application to the comparison of monovarietal ciders. Journal of Sensory Studies, 19, 510–518.CrossRefGoogle Scholar
  46. Husson, F., Lê, S. and Pagés, J. 2005. Confidence ellipse for the sensory profiles obtained by principal component analysis. Food Quality and Preference, 16, 245–250.Google Scholar
  47. Husson, F., Lê, S. and Pagés, J. 2006. Variability of the representation of the variables resulting from PCA in the case of a conventional sensory profile. Food Quality and Preference, 18, 933–937.Google Scholar
  48. Jaeger, S. R., Andani, Z., Wakeling, I. N. and MacFie, H. J. H. 1998. Consumer preferences for fresh and aged apples: A cross-cultural comparison. Food Quality and Preference, 9, 355–366.CrossRefGoogle Scholar
  49. Jaeger, S. R., Wakeling, I. N., MacFie, H. J. H. 2000. Behavioural extensions to preference mapping: The role of synthesis. Food Quality and Preference, 11, 349–359.CrossRefGoogle Scholar
  50. Johansen, S. B., Hersleth, M. and Næs, T. 2009. A new approach to product set selection and segmentation in preference mapping. Food Quality and Preference, doi:10.1016/j.foodqual.2009.05.007.Google Scholar
  51. Johnson, R. A. and Wichern, D. W. 2007. Applied Multivariate Statistical Analysis, Sixth Edition. Prentice-Hall, New York.Google Scholar
  52. Kaiser, H. F. 1960. The application of electronic computers in factor analysis. Education and Psychological Measurement, 20, 141–151.CrossRefGoogle Scholar
  53. Kravitz, D. 1975. Who’s who in Greek and Roman mythology? Clarkson N. Potter, New York.Google Scholar
  54. krzanowski, W. J. 1988. Priciples of Multivariate Analysis: A User’s Perspective. Claredon Press, Oxford, pp. 53–85.Google Scholar
  55. Kuhfield, W. F. 1993. Graphical methods for marketing research. In: Marketing Research Methods in the SAS System: A Collection of Papers and Handouts. SAS Institute, Cary NC.Google Scholar
  56. Langron, S. P. 1983. The application of Procrustes statistics to sensory profiling. In: A. A. Willliams and R. K. Atkin (eds.), Sensory Quality in Food and Beverages: Definition, Measurement and Control. Horwood, Chichester, UK, pp. 89–95.Google Scholar
  57. Lavine, B. K., Jurs, P. C. and Henry, D. R. 1988. Chance classifications by non-linear discriminat functions. Journal of Chemometrics, 2, 1–10.CrossRefGoogle Scholar
  58. Lê, S. and Husson, F. 2008. SensoMineR: A package for sensory data analysis. Journal of Sensory Studies, 23, 14–25.Google Scholar
  59. Lê, S., Pagés, J. and Husson, F. 2008. Methodology for the comparison of sensory profiles provided by several panels: Application to a cross-cultural study. Food Quality and Preference, 19, 179–184.Google Scholar
  60. Lee, S. M., Chung, S.-J., Lee, O.-H., Lee, H.-S., Kim, Y.-K. and Kim, K.-O. 2008. Development of sample preparation, presentation procedure and sensory descriptive analysis of green tea. Journal of Sensory Studies, 23, 45–467.CrossRefGoogle Scholar
  61. Lotong, V., Chambers, D. H., Dus, C., Chambers, E. and Civille, G. V. 2002. Matching results of two independent highly trained sensory panels using different descriptive analysis methods. Journal of Sensory Studies, 17, 429–444.CrossRefGoogle Scholar
  62. Lovely, C. and Meullenet, J.-F. 2009. Comparison of preference mapping techniques for the optimization of strawberry yogurt. Journal of Sensory Studies, 24, 457–478.CrossRefGoogle Scholar
  63. Luan, F., Liu, H. T., Wen, Y. Y. and Zhang, X. Y. 2008. Classification of the fragrance properties of chemical compounds based on support vector machine and linear discriminant analysis. Flavour and Fragrance Journal, 23, 232–238.CrossRefGoogle Scholar
  64. Lund, C. M., Thompson, M. K., Benkwitz, F., Wohler, M. W., Triggs, C. M., Gardner, R., Heymann, H. and Nicolau, L. 2009. New Zealand Sauvignon blanc distinct flavor characteristics: Sensory, chemical and consumer aspects. American Journal of Enology and Viticulture, 60, 1–12.Google Scholar
  65. MacFie, H. J. H. and Thomson, D. M. H. 1988. Preference mapping and multidimensional scaling. In: J. R. Piggott (ed.), Sensory Analysis of Foods. Elsevier Applied Science, New York, pp. 381–409.Google Scholar
  66. MacKay, D. 2006. Chemometrics, econometrics, psychometrics – How best to handle hedonics. Food Quality and Preference, 17, 529–535.CrossRefGoogle Scholar
  67. MacKay, D. 2001. Probalistic unfolding models for sensory data. Food Quality and Preference, 12, 427–436.CrossRefGoogle Scholar
  68. Malundo, T. M. M., Shewfelt, R. L., Ware, G. O. and Baldwin, E. A. 2001. An alternative method for relating consumer and descriptive data used to identify critical flavor properties of mango (Mangifera, indica L.). Journal of Sensory Studies, 16, 199–214.CrossRefGoogle Scholar
  69. Martens, H. and Martens, M. 2001. Multivariate Analysis of Quality: An Introduction. Wiley, Chichester, UK.Google Scholar
  70. Martínez, C., Santa Cruz, M. J., Hough, G. and Vega, M. J. 2002. Preference mapping of cracker type biscuits. Food Quality and Preference, 13, 535–544.CrossRefGoogle Scholar
  71. Meullenet, J.-F., Xiong, R. and Findlay, C. 2007. Multivariate and probalistic analyses of sensory science problems. Wiley-Blackwell, New York.Google Scholar
  72. Martin, N., Molimard, P., Spinnler, E. and Schlich, P. 2000. Comparison of odour profiles performed by two independent trained panels following the same disruptive analysis procedures. Food Quality and Preference, 11, 487–495.CrossRefGoogle Scholar
  73. Martín, Y. G., Pavón, J. L. P., Cordero, B. M. and Pinto, C. G. 1999. Classification of vegetable oils by linear discriminant analysis of electronic nose data. Analytica Chimica Acta, 384, 83–94.CrossRefGoogle Scholar
  74. McEwan, J. A. 1996. Preference mapping for product optimization. In: T. Naes and E. Risvik (eds.), Multivariate Analysis of Sensory Data. Elsevier, London, pp. 71–102.CrossRefGoogle Scholar
  75. Meudic, B. and Cox, D. N. 2001. Understanding Malaysian consumers’ perception of breakfast cereals using free choice profiling. Food Australia, 53, 303–307.Google Scholar
  76. Meullenet, J.-F., Xiong, R., Monsoor, M. A., Bellman-Homer, T., Dias, P., Zivanovic, S., Fromm, H. and Liu, Z. 2002. Preference mapping of commercial toasted white corn tortillas. Journal of Food Science, 67, 1950–1957.CrossRefGoogle Scholar
  77. Monteleone, E., Frewer, L., Wakeling, I. and Mela, D. J. 1998. Individual differences in starchy food consumption: The application of preference mapping. Food Quality and Preference, 9, 211–219.CrossRefGoogle Scholar
  78. Montouto-Graña, M., Fernández-Fernández, E., Vázquez-Odé©riz, M., Romero-Rodríguez, M. 2002. Development of a sensory profile for the specific denomination “Galician potato”. Food Quality and Preference, 13, 99–106.CrossRefGoogle Scholar
  79. Pickering, G. J. 2009. Optimizing the sensory characteristics and acceptance of canned cat foodL use of a human taste panel. Journal of Animal Physiology and Animal Nutrition, 93, 52–60.CrossRefGoogle Scholar
  80. Pillonel, L., Bütikofer, U., Schlichtherle-Cerny, H., Tabacchi, R. and Bosset, J. O. 2005. Geographic origin of European Emmental. Use of discriminant analysis and artificial neural network for classification purposes. International Dairy Journal, 15, 557–562.CrossRefGoogle Scholar
  81. Popper, R., Heymann, H. and Rossi, F. 1997. Three multivariate approaches to relating consumer to descriptive data. In: A. M. Muñoz (ed.), Relating Consumer, Descriptive and Laboratory Data to Better Understand Consumer Responses. ASTM Publication Code Number 28–030097–36. ASTM, West Conshohocken, PA, pp. 39–61.Google Scholar
  82. Resano, H., Sanjuán, A. I. and Albisu, L. M. 2009. Consumers’ acceptability and actual choice: An exploratory research on cured ham in Spain. Food Quality and Preference, 20, 391–398.CrossRefGoogle Scholar
  83. Rødbotten, M., Martinsen, B. K., Borge, G. I., Mortvedt, H. S., Knutsen, S. H., Lea, P. and Næs, T. 2009. A cross-cultural study of preference for apple juice with different sugar and acid contents. Food Quality and Preference, 20, 277–284.CrossRefGoogle Scholar
  84. Santa Cruz, M. J., Garitta, L. V. and Hough, G. 2003. Note: Relationships of consumer acceptability and sensory attributes of Yerba mate (Ilex paraguariensis St. Hilaire) using preference mapping. Food Science and Technology International, 9, 346–347.Google Scholar
  85. Schlich, P. 1995. Preference mapping: Relating consumer preferences to sensory or instrumental measurements. In: P. Etievant and P. Schreier (eds.), Bioflavour: Analysis/Precursor Studies/ Biotechnology. INRA Editions, Versailles, France.Google Scholar
  86. Schmidt, T. B., Schilling, M. W., Behrends, J. M., Battula, V., Jackson, V., Sekhon, R. K. and Lawrence, T. E. 2010. Use of cluster analysis and preference mapping to evaluate consumer acceptability of choice and select bovine M. Longissimus Lumborum steaks cooked to various end-point temperatures. Meat Science, 84, 46–53.CrossRefGoogle Scholar
  87. Slama, M., Heyd, B., Danzart, M. and Ducauze, C. J. 1998. Plans D-optimaux: une straté©gie de reduction du nombre de produits en cartographie des pré©fé©rences. Sciences des Aliments, 18, 471–483.Google Scholar
  88. Serrano, S., Villarejo, M., Espejo, R. and Jodral, M. 2004. Chemical and physical parameters of Andalusian honey: Classification of citrus and eucalyptus honeys by discriminant analysis. Food Chemistry, 87, 619–625.CrossRefGoogle Scholar
  89. Snedecor, G. W. and Cochran, W. G. 1989. Statistical Methods, Eighth Edition. Iowa State University, Ames, IA.Google Scholar
  90. Sté¥hle, L. and Wold, S. 1990. Multivariate analysis of variance (MANOVA). Chemometrics and Intelligent Laboratory Systems, 9, 127–141.CrossRefGoogle Scholar
  91. Stevens, J. 1986. Applied Multivariate Statistics for the Social Sciences. Erlbaum Press, New York, NY.Google Scholar
  92. Tabachnik, L. and Fidell, B. 2006. Using Multivariate Statistics, Fifth Edition, Allyn and Bacon.Google Scholar
  93. Tunaley, A. Thomson. D. M. H. and McEwan, J. A. 1988. An investigation of the relationship between preference and sensory characteristics of nine sweeteners. In: D. M. H. Thomson (ed.), Food Acceptability. Elsevier Applied Science, New York.Google Scholar
  94. van Kleef, E., van Trijp, H. C. M. and Luning, P. 2006. Internal versus external preference analysis: An exploratory study on end-user evaluation. Food Quality and Preference, 17, 387–399.CrossRefGoogle Scholar
  95. Van Oirschot, Q. E. A., Rees, D. and Aked, J. 2003. Sensory characteristics of five sweet potato cultivars and their changes during storage under tropical conditions. Food Quality and Preference, 14, 673–680.CrossRefGoogle Scholar
  96. Wienberg, L. and Martens, M. 2000. Sensory quality criteria for cold versus warm green peas studies by multivariate data analysis. Journal of Food Quality, 23, 565–581.CrossRefGoogle Scholar
  97. Wortel, V. A. L. and Wiechers, J. W. 2000. Skin sensory performance of individual personal care ingredients and marketed personal care products. Food Quality and Preference, 11, 121–127.CrossRefGoogle Scholar
  98. Yackinous, C., Wee, C. and Guinard, J-X. 1999. Internal preference mapping of hedonic ratings for Ranch salad dressings varying in fat and garlic flavor. Food Quality and Preference, 10, 401–409.CrossRefGoogle Scholar
  99. Young, N. D., Drake, M., Lopetcharat, K. and McDaniel, M. R. 2004. Preference mapping of cheddar cheese with varying maturity levels. Journal of Dairy Science, 87, 11–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Harry T. Lawless
    • 1
  • Hildegarde Heymann
    • 2
  1. 1.Department of Food ScienceCornell UniversityIthacaUSA
  2. 2.Department of Viticulture and EnologyUniversity of California – DavisDavisUSA

Personalised recommendations