Data in Production and Supply Chain Planning

Part of the International Series in Operations Research & Management Science book series (ISOR, volume 151)


Charles Babbage, one of the inventors of mechanical engines capable of calculation, commented (Babbage 1864): “On two occasions I have been asked, – ‘Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?’ I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.” Roughly 100 years later in the age of electronic engines capable of calculation, an IBM instructor in New York named George Fuechsel captured this idea more succinctly when he used “garbage in, garbage out” as a training mantra.


Supply Chain Data Element Corporate Culture Production Planner Introductory Chapter 


  1. Asmundsson J, Rardin RL, Uzsoy R (2006) Tractable non-linear production planning models for semiconductor wafer fabrication facilities. IEEE Trans Semicond Manufact 19(1):95–111CrossRefGoogle Scholar
  2. Babbage C (1864) Passages from the Life of a Philosopher. Longman and Co., pp 67Google Scholar
  3. Backus P, Janakiram M, Mowzoon S, Runger G, Bhargava A (2006) Factory cycle-time prediction with a data-mining approach. IEEE Trans Semicond Manufact 19(2):252–258CrossRefGoogle Scholar
  4. Ballou D, Pazer H (1995) Designing information systems to optimize accuracy-timeliness trade-off. Inf Syst Res 6(1):51–72CrossRefGoogle Scholar
  5. Ballou D, Tayi GK (1999) Enhancing data quality in data warehouse environments. Commun ACM 42(1):73–78CrossRefGoogle Scholar
  6. Ballou D, Wang R, Pazer H, Tayi GK (1998) Modeling information manufacturing systems to determine information product quality. Manage Sci 44(4):462–484CrossRefGoogle Scholar
  7. Batini C, Scannapieco M (2006) Data quality: concepts, methodologies and techniques (data-centric systems and applications). Springer-Verlag New York, Inc., Secaucus, NJ. ISBN 978-3450331728Google Scholar
  8. Brackett MH (1994) Data sharing using a common data architecture. Wiley. ISBN 978-0471309932Google Scholar
  9. Brackett MH (2000) Data resource quality: turning bad habits into good practices, Addison-Wesley. ISBN 978-0201713060Google Scholar
  10. Chengalur-Smith IN, Ballou D, Pazer H (1999) The impact of data quality information on decision making: an exploratory analysis. IEEE Trans Knowl Data Eng 11(6):853–864CrossRefGoogle Scholar
  11. Dalvi N, Suciu D (2007) Management of probabilistic data: foundations and challenges. In: Proceedings of 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Beijing), June 11–13, 2007, pp 1–12Google Scholar
  12. Dasu T, Johnson T (2003) Exploratory data mining and data cleaning. John Wiley & Sons, Inc., New York, NY. ISBN 978-0471268512CrossRefGoogle Scholar
  13. English LP (1999) Improving data warehouse and business information quality: methods for reducing costs and increasing profits. Wiley. ISBN 978-0471253839Google Scholar
  14. Fan W, Lu H, Madnick SE, Cheung D (2001) Discovering and reconciling value conflicts for numerical data integration. Inform Syst 26(8):635–656CrossRefGoogle Scholar
  15. Jarke M, Jeusfeld MA, Quix C, Vassiliadis P, Architecture and quality in data warehouse: an extended repository approach. Inform Syst 24(3):229–253Google Scholar
  16. Jung W, Olfman L, Ryan T, Park Y (2005) An experimental study of the effects of contextual data quality and task complexity on decision performance. In: Proceedings of IEEE International Conference on Information Reuse and Integration, pp 149–154Google Scholar
  17. Kahn B, Strong D, Wang R (2002) Information quality benchmarks: product and service performance. Commun ACM 45(4):184–192CrossRefGoogle Scholar
  18. Lee YW, Pipino L, Strong D, Wang R (2004) Process embedded data integrity. J Database Manage 15(1):87–103Google Scholar
  19. Lee YW, Strong DM, Kahn BK, Wang RY (2002) AIMQ: a methodology for information quality assessment. Inform Manage 40(2):133–146CrossRefGoogle Scholar
  20. Loshin D (2008) Master data management. Morgan Kaufmann. ISBN 978-0123742254Google Scholar
  21. Madnick S, Zhu H (2006) Improving data quality through effective use of data semantics. Data Knowl Eng 59(2):460–475CrossRefGoogle Scholar
  22. Nurani RK, Strojwas AJ, Maly WP, Ouyang C, Shindo W, Akella R, McIntyre MG, Derrett J (1998) In-line yield prediction methodologies using patterned wafer inspection information. IEEE Trans Semicond Manufact 11(1):40–47CrossRefGoogle Scholar
  23. Petrovskiy MI (2003) Outlier detection algorithms in data mining systems. Program Comput Soft 29(4):228–237CrossRefGoogle Scholar
  24. Pierce EM (2004) Assessing data quality with control matrices. Commun ACM 47(2):82–86CrossRefGoogle Scholar
  25. Pipino LL, Lee YW, Wang RY (2002) Data quality assessment. Commun ACM 45(4):211–218CrossRefGoogle Scholar
  26. Raghunathan S (1999) Impact of information quality and decision-maker quality on decision quality: a theoretical model and simulation analysis. Decis Support Syst 26(4):275–286CrossRefGoogle Scholar
  27. Redman TC (1998) The impact of poor data quality on the typical enterprise. Commun ACM 41(2):79–82CrossRefGoogle Scholar
  28. Shankaranarayan G, Ziad M, Wang RY (2003) Managing data quality in dynamic decision environment: an information product approach. J Database Manag 14(4):14–32Google Scholar
  29. Wang RY, Lee Y, Pipino L, Strong D (1998) Managing your information as a product. Sloan Manag Rev Summer:95–106Google Scholar
  30. Wang RY, Reddy MP, Kon HB (1995) Toward quality data: an attribute-based approach. Decis Support Syst 13(3–4):349–372CrossRefGoogle Scholar
  31. Wang RY, Strong DM (1996) Beyond accuracy: what data quality means to data consumers. J Manage Inform Syst 12(4):5–33Google Scholar
  32. Wang RY, Ziad M, Lee YW (2001) Data quality. Springer. ISBN 978-0792372158Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Intel CorporationChandlerUSA

Personalised recommendations