Subthreshold MOS for Ultra-Low Power



This Chapter provides a brief review on modeling of MOSFET devices especially for weak-inversion (WI) devices.1 The main issues associated with WI design such as variation due to PVT, mismatch effects,and device noise are briey addressed. Meanwhile, a review on the main problems for implementing ULP CMOS circuits is provided. At the end of the Section, an analytical approach for systematic design of digital CMOS circuits operating in WI region with optimum energy consumption and acceptable reliability is proposed.


Threshold Voltage Supply Voltage Very Large Scale Integration Technology Node Noise Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Tsividis, Operation and Modeling of the MOS Transistors, McGraw-Hill, 1999Google Scholar
  2. 2.
    R. G. Arns, “The other transistors: early history of the metal-oxide semiconductor field-effect transistor,” in IEE Eng. Sci. Educ. J., vol. 7, no. 5, pp. 233–240, Oct. 1998CrossRefGoogle Scholar
  3. 3.
    J. E. Lilienfeld, “Method and apparatus for controlling electric current,” US Patent no. 1745175, Jan. 1930Google Scholar
  4. 4.
    Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998Google Scholar
  5. 5.
    E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operation,” IEEE J. Solid-State Circuits, vol. 12, no. 3, pp. 224–231, Jun. 1977CrossRefGoogle Scholar
  6. 6.
    C. C. Enz and E. A. Vittoz, Charge-Based MOS Transistor Modeling, Wiley, 2006Google Scholar
  7. 7.
    C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications,” in Analog Integrated Circuits and Signal Processing, vol. 8, pp. 83–114, Jul. 1995Google Scholar
  8. 8.
    G. E. Moore, “Cramming more components onto integrated circuits,” in Electronics Magzine, vol. 38, no. 8, Apr. 1965Google Scholar
  9. 9.
    M. Plank, “The Genesis and Present State of Development of the Quantum Theory (Nobel Lecture),” Jun. 1920Google Scholar
  10. 10.
    T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Ed., Cambridge University Press, 2002Google Scholar
  11. 11.
    T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584–594, Apr. 1990CrossRefGoogle Scholar
  12. 12.
    T. Sakurai and A. R. Newton, “A simple MOSFET model for circuit analysis,” in IEEE Transactions on Electron Devices, vol. 38, pp. 887-894, Apr. 1991CrossRefGoogle Scholar
  13. 13.
    P. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, Jun. 2005CrossRefGoogle Scholar
  14. 14.
    T. Mizuno, J.-I. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s,” in IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 2216–2221, Nov. 1994CrossRefGoogle Scholar
  15. 15.
    A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva, “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” in IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1837–1852, Sep. 2003CrossRefGoogle Scholar
  16. 16.
    D. Bol, R. Ambroise, D. Flander, and J. D. Legat, “Interests and limitations of technology scaling for subthreshold logic,” in Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 10, pp. 1508–1519, Oct. 2009CrossRefGoogle Scholar
  17. 17.
    A.-J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132–143, Jan. 2005CrossRefGoogle Scholar
  18. 18.
    A. A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1803–1816, Aug. 2006CrossRefGoogle Scholar
  19. 19.
    M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumnetation amplifier for medical purposes,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, Dec. 1987CrossRefGoogle Scholar
  20. 20.
    R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording application,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jun. 2003CrossRefGoogle Scholar
  21. 21.
    H. Wu and Y. P. Xu, “A 1V 2.3 μW biomedical signal acquisition IC,” IEEE Solid-State Circuit Conf. (ISSCC), pp. 119–120, Feb. 2006Google Scholar
  22. 22.
    T. Denison, K. Consoer, A. Kelly, A. Hachenburg, and W. Santa, “A 2.2 μW 94 nV/\(\sqrt{Hz}\), chopper-stabilized instrumentation amplifier for EEG detection in chronic implants,” IEEE Solid-State Circuit Conf. (ISSCC), pp. 162–163, Feb. 2007Google Scholar
  23. 23.
    W. Wattanapanitch, M. Fee, and R. Sarpeshkar, “An energy-efficient micropower nerual recording amplifier,” IEEE Trans. Biomedical Circ. Syst., vol. 1, no. 2, pp. 136–147, Jun. 2007CrossRefGoogle Scholar
  24. 24.
    V. Majidzadeh Bafar, A. Schmid, and Y. Leblebici, “A micropower neural recording amplifier with improved noise efficiency factor,” to appear in European Conference on Circuits Theory and Design (ECCTD), Antalya, Turkey, Aug. 2009Google Scholar
  25. 25.
    R. M. Swanson and J. D. Meindl, “Ion-implanted complementary MOS transistors in low-voltage circuits,” IEEE J. Solid-State Circuits, vol. 7, pp. 146–153, Apr. 1972CrossRefGoogle Scholar
  26. 26.
    E. Vittoz, B. Gerber, and F. Leuenberger, “Silicon-gate CMOS frequency divider for the electronicd wirst watch,” IEEE J. Solid-State Circuits, vol. 7, no. 2, pp. 100–104, Apr. 1972CrossRefGoogle Scholar
  27. 27.
    A. P. Chandrakasan and R. W. Broderson, “Minimizing power consumption in digital CMOS circuits,” in Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995Google Scholar
  28. 28.
    Z. T. Deniz, Y. Leblebici, and E. A. Vittoz, “On-line global energy optimization in multi-core systems using priciples of analog computation,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1593–1596, Jul. 2007CrossRefGoogle Scholar
  29. 29.
    “International Technology Road Map for Semiconductors,” 2001, [online], Available:
  30. 30.
    B. H. Calhoun, S. Khanna, R. Mann, and J. Wang, “Sub-threshold circuit design with shrinking CMOS devices,” in IEEE International Symposium on Circuits and Systems, pp. 2541–2544, May 2009Google Scholar
  31. 31.
    F. M. Wanlass and C. T. San, “Nanowatt logic using field-effect metal-oxide semiconductor triodes,” IEEE Solid-State Circuit Conf. (ISSCC), pp. 32–33, Feb. 1963Google Scholar
  32. 32.
    M. Anis and M. Elmasry, Multi-Threshold CMOS Digital Circuits, Managing Leakage Power, Kluwer, 2003Google Scholar
  33. 33.
    K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimandi, “Leakage current mechanisems and leakage reduction techniques in deep-submicrometer CMOS circuits,” in Proceeding of the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003Google Scholar
  34. 34.
    P. R. van der Meer, A. van Staveren, and A. H. M. van Roermund, Low-Power Deep Sub-Micron CMOS Logic, Springer, 2004Google Scholar
  35. 35.
    K. Schuegraf and C. Hu, “Hole injection Sio2 breakdown model for very low voltage lifetime extrapolation,” in IEEE Transactions Electron Devices, vol. 41, pp. 761–767, May 1994CrossRefGoogle Scholar
  36. 36.
    Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P. K. Ko, and Y. C. Cheng, “Threshold voltage model for deep-submicrometer MOSFETs,” in IEEE Transactions on Electron Devices, vol. 40, no. 1, pp. 8695, Jan. 1993Google Scholar
  37. 37.
    K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design, New York: Wiley, 2000Google Scholar
  38. 38.
    Y. Leblebici and S.-M. Kang, Hot-carrier reliability of MOS VLSI circuits, Kluwer, 1993Google Scholar
  39. 39.
    B.C. Paul, Raychowdhury, and K. Roy, “Device optimization for digital subthreshold logic operation,” in IEEE Transactions on Electron Devices, vol. 52, no. 2, pp. 237–247, Feb. 2005Google Scholar
  40. 40.
    K. Tae-Hyoung, J. Kaene, E. Hanyong, and C. H. Kim, “Utilizing reverse short-channel effect for optimal subthreshold circuit design,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 7, pp. 821–829, Jul. 2007CrossRefGoogle Scholar
  41. 41.
    S. Chung and C.-T Li, “An analytical threshold-voltage model of trench-isolated MOS devices with nonuniformly doped substrates,” in IEEE Transactions on Electron Devices, vol. 39, pp. 614–622, Mar. 1992Google Scholar
  42. 42.
    D. Fotty, MOSFET Modeling with SPICE, Englewood Cliffs, NJ: Prentice-Hall, 1997Google Scholar
  43. 43.
    S. Hanson, M. Seok, D. Sylvester, and D. Blauw, “Nanometer device scaling in subthreshold logic and SRAM,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 175–185, Jan. 2008CrossRefGoogle Scholar
  44. 44.
    T.-H. Kim, J. Jeane, H. Eom, and C. H. Kim, “Utilizing reverse shortchannel effect for optimal subthreshold circuit design,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 7, pp. 821–829, Jul. 2007CrossRefGoogle Scholar
  45. 45.
    Y. Ye, S. Borkar, and V. De, “New technique for standby leakage reduction in high-performance circuits,” Dig. Tech. Papers Symp. VLSI Circuits, pp. 40–41, Jun. 1998Google Scholar
  46. 46.
    Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of standby leakage power in CMOS circuits considering accurate modeling of transistor stacks,” in Proceedings of the International Symposium on Low Power Electronics and Design, pp. 239–244, Aug. 1998Google Scholar
  47. 47.
    Z. Chen, L. Wei, A. Keshavarzi, and K. Roy, “IDDQ testing for deep submicron ICs: challenges and solutions,” IEEE Des. Test Comput., pp. 24–33, Mar.-Apr. 2002Google Scholar
  48. 48.
    C. Wann, F. Assaderaghi, R. Dennard, C. Hu, G. Shahidi, and Y. Taur, “Channel profile optimization and device design for low-power high-performance dynamic-threshold MOSFET,” Dig. Tech. Papers IEEE Int. Electron Devices Meeting, pp. 113–116, Dec. 1996Google Scholar
  49. 49.
    A. J. Bhavnagarwala, B. L. Austin, K. A. Bowman, and J. D. Meindl, “A minimum total power methodology for projecting limits on CMOS GSI,” IEEE Trans. VLSI Syst., vol. 8, pp. 235–251, Jun. 2000CrossRefGoogle Scholar
  50. 50.
    S. Mukhopadhyay, K. Keunwoo; C. Ching-Te, “Device design and optimization methodology for leakage and variability reduction in sub-45-nm FD/SOI SRAM,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 152–162, Jan. 2008CrossRefGoogle Scholar
  51. 51.
    J. Lohstroh, E. Seevinck, and J. De Groot, “Worst-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE J. Solid-State Circuits, vol. 18, Dec. 1983Google Scholar
  52. 52.
    J. R. Hauser, “Noise margin criteria for digital logic circuits,” IEEE Transactions on Education, vol. 36, Nov. 1993Google Scholar
  53. 53.
    A. Tajalli and Y. Leblebici, “Leakage current reduction using subthreshold source-coupled logic,” in IEEE Transactions on Circuits and Systems-II: Express Briefs (Special Issue on Nanocircuits), vol. 56, no. 5, pp. 347–351, May 2009Google Scholar
  54. 54.
    B. Zhai, S. Hanson, D. Blauw, and D. Sylvester, “Analysis and mitigation of variability in subthreshold design,” in Proceedings IEEE/ACM International Symposium Low-Power Electronics Design, pp. 20–25, 2005Google Scholar
  55. 55.
    R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, Aug. 1997CrossRefGoogle Scholar
  56. 56.
    N. Verma, J. Kwong, and A. P. Chandrakasan, “Nanometer MOSFET variation in minimum energy subthrehsold circuits,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 163–174, Jan. 2008CrossRefGoogle Scholar
  57. 57.
    Predictive Technology Model, [online],
  58. 58.
    X. Xi, and et al., BSIM4.3.0 MOSFET Model - Users Manual, University of California, Berkeley, 2003Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Microelectronic Systems Lab. (LSM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations