Advertisement

Chemical Sensors

Chapter

Abstract

Sensors for measuring and detecting chemical substances are pervasively employed yet are, for the most part, unobtrusive. They are used to help run our cars more efficiently, track down criminals, and monitor our environment and health. Examples of uses include monitoring of oxygen in automobile exhaust systems, glucose levels in samples from diabetics, and carbon dioxide in the environment. In the laboratory, chemical detectors are the heart of key pieces of analytical equipment employed in the development of new chemicals and drugs and to monitor industrial processes. Progress has been impressive, and the literature is full of interesting developments. Recent developments include a broad spectrum of technologies, including improved screening systems for security applications [1] and miniaturization of systems once only used in laboratories [2]. Chemical sensors respond to stimuli produced by various chemicals or chemical reactions. These sensors are intended for identification and quantification of chemical species (including both liquid and gaseous phases).

Keywords

Chemical Sensor Electrochemical Sensor Electronic Nose Wheatstone Bridge Acoustic Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jacoby M (2009) Keepers of the gate. Chem Engng News 87(22):10–13CrossRefGoogle Scholar
  2. 2.
    Zheng O, Noll RJ, Cooks RG (2009) Handheld miniature ion trap mass spectrometers. Anal Chem 81(7):2421–2425CrossRefGoogle Scholar
  3. 3.
    Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectrum 35:22–34CrossRefGoogle Scholar
  4. 4.
    Amoore JE, Johnston JW, Rubin M (1964) The stereochemical theory of odor. Sci Am 210:42–99CrossRefGoogle Scholar
  5. 5.
    Ho CK, Hughes RC (2002) In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2:23–34CrossRefGoogle Scholar
  6. 6.
    Kim T (2009) Canary in the old growth. High Country News, Paonia, Colorado, February 16Google Scholar
  7. 7.
    For a wealth of information on Mine Safety Gas Monitoring Equipment is the United States Department of Labor. Mine Safety & Health Administration (MSHA) website: http://www.msha.gov
  8. 8.
    Clutton-Brock J (1995) In: Serpell J (ed) The domestic dog, its evolution, behaviour and interactions with people, Cambridge University Press, Cambridge, pp 7–20Google Scholar
  9. 9.
    Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices, Academic Press, New YorkGoogle Scholar
  10. 10.
    Wolfrum EJ, Meglen RM, Peterson D, Sluiter J (2006) Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens Actuators B 115:322–329CrossRefGoogle Scholar
  11. 11.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355ADSCrossRefGoogle Scholar
  12. 12.
    Sberveglieri G, Kluwer (ed) (1992) Gas sensors: principles, operations, and developments, Academic Publishers, Boston, MA, pp 8, 148, 282, 346–408Google Scholar
  13. 13.
    Blum LJ (1997) Bio- and chemi-luminescent sensors, World Scientific, River Edge, NJ, pp 6–32CrossRefGoogle Scholar
  14. 14.
    Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B 23:103–109CrossRefGoogle Scholar
  15. 15.
    Demarne V, Sanjinés R (1992) Thin film semiconducting metal oxide gas sensors. In: G. Sberveglieri (ed) Gas sensors, Kluwer Academic, Dordrecht, Netherlands, pp 89–116CrossRefGoogle Scholar
  16. 16.
    Malyshev VV, Vasiliev AA, Eryshkin AV, Koltypin EA, Shubin YI, Buturlin AI, Zaikin VA, Chakhunashvili GB (1992) Gas sensitivity of SnO2 and ZnO thin-film resistive sensors to hydrocarbons, carbon monoxide, and hydrogen. Sens Actuators B 10:11–14CrossRefGoogle Scholar
  17. 17.
    Hoefer U, Kühner G, Schweizer W, Sulz G, Steiner K (1994) CO and CO2 thin-film SnO2 gas sensors on Si substrates. Sens Actuators B 22:115–119CrossRefGoogle Scholar
  18. 18.
    Demarne V, Grisel A (1998) An integrated low-power thin-film CO gas sensors on silicon. Sensors and Actuators B 13:301–313CrossRefGoogle Scholar
  19. 19.
    Barsan N, Tomescu A (1995) The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4, and CO. Sens Actuators B 26–27:45–48Google Scholar
  20. 20.
    Van Geloven P, Moons J, Honore M, Roggen J (1989) Tin (IV) oxide gas sensors: thick-film versus metallo-organic based sensors. Sens Actuators B 17:361–368CrossRefGoogle Scholar
  21. 21.
    Schierbaum KD, Geiger J, Weimar U, Göpel W (1993) Specific palladium and platinum doping for SnO2-based thin film sensor arrays. Sens Actuators B 13–14:143–147Google Scholar
  22. 22.
    Sulz G, Kuhner G, Reiter H, Uptmoor G, Schweizer W, Low H, Lacher M, Steiner K (1993) Ni, In, and Sb implanted Pt and V catalyzed thin-film SnO2 gas sensors. Sens Actuators B 16:390–395CrossRefGoogle Scholar
  23. 23.
    Tournier G, Pijolat C, Lalauze R, Patissier B (1995) Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sens Actuators B 26–27:24–28Google Scholar
  24. 24.
    Huck R, Böttger U, Kolh D, Heiland G (1993) Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits. Sens Actuators B 17:355–359Google Scholar
  25. 25.
    Saji K, Takahashi H, Kondo H, Takeuchi, Igarashi I (1983) Characteristics of TiO2 oxygen sensor in nonequilibrium gas mixtures. In: Seiyama T, Fueki K, Shiokawa J, Suzuki S (eds) Chemical sensors, proceedings of the international meeting on chemical sensors, Fukuoka Japan, Elsevier, Tokyo, pp 171–176Google Scholar
  26. 26.
    Mumuera G, Gonzalez-Ellpe AR, Munoz A, Fernandez A, Soria J, Conesa J, Sanz J (1989) Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 Systems. Sens Actuators B 18:337–348CrossRefGoogle Scholar
  27. 27.
    Egashira M, Kanehara N, Shimizu Y, Iwanaga H (1989) Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers. Sens Actuators B 18:349–360CrossRefGoogle Scholar
  28. 28.
    Gentry SJ (1988) Catalytic devices. In: Edmonds TE (ed) Chemical sensors. Chapman and Hall, New YorkGoogle Scholar
  29. 29.
    Cobbold RSC (1974) Transducers for biomedical measurements. Wiley, New YorkGoogle Scholar
  30. 30.
  31. 31.
    Tan TC, Liu CC (1991) Principles and fabrication materials of electrochemical sensors. Chemical sensor technology. 3, Kodansha LtdGoogle Scholar
  32. 32.
    Clark LC (1956) Monitor and control of blood and tissue oxygen tension. Trans Am Soc Artif Internal Organs 2:41–46Google Scholar
  33. 33.
    Grate JW, Klusty M, Barger WR, Snow AW (1990) Role of selective sorption in chemiresistor sensors for organophosphorus detection. Anal Chem 62(18):1927–1934CrossRefGoogle Scholar
  34. 34.
    Ho CK, Hughes RC (2002) In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater, Sensors 2:23–34CrossRefGoogle Scholar
  35. 35.
    Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2000) Application-specific sensor systems based on CMOS chemical microsensors. Sens Actuators B Chem 70:2–11CrossRefGoogle Scholar
  36. 36.
    Endres H-E, Hartinger R, Schwaiger M, Gmelch G, Roth M (1999) A capacitive CO2 sensor system with suppression of the humidity interference. Sens Actuators B Chem 57:83–87CrossRefGoogle Scholar
  37. 37.
    Patel SV, Mlsna TE, Fruhberger B, Klaassen E, Cemalovic S, Baselt DR (2003) Chemicapacitive microsensors for volatile organic compound detection. Sens Actuators B 96(3):541–553CrossRefGoogle Scholar
  38. 38.
    Fotis E (2002) A new ammonia detector based on thin film polymer technology. Sensors 19(5):73–75Google Scholar
  39. 39.
    Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B Chem 116(1–2):192–201CrossRefGoogle Scholar
  40. 40.
    The Multi-User MEMS Process (MUMPs) from MEMSCAP, Inc. (Durham, NC) is used to manufacture the these chemicapacitive sensor chips.Google Scholar
  41. 41.
    Britton CL, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21CrossRefGoogle Scholar
  42. 42.
    Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton CL, Patel SV, Mlsna TE, McCorkle D, Warmack Jr, B (2003) Design and performance of a microcantilever-based hydrogen sensor, Sens Actuators B Chem 88(2):120–131CrossRefGoogle Scholar
  43. 43.
    Polk BJ (2002) ChemFET arrays for chemical sensing microsystems, IEEE 732–735Google Scholar
  44. 44.
    Wróblewski W, Wojciechowski K, Dybko A, Brzózka Z, Egberink RJM, Snellink-Ruël BHM, Reinhoudt DN (2001) Durability of phosphate-selective CHEMFETs, Sens Actuators B: Chem 78(1–3):315–319CrossRefGoogle Scholar
  45. 45.
    Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments, IEEE Sensor J 1(4):256–274CrossRefGoogle Scholar
  46. 46.
    Janata J (1989) Principles of chemical sensors, Chapter 4. Plenum Press, New YorkGoogle Scholar
  47. 47.
    Kharitonov AB, Zayats M, Lichtenstien A, Katz E, Willner I (2000) Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens Actuators B 70(1–3):222–231CrossRefGoogle Scholar
  48. 48.
    Ballantine DS, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic wave sensors: theory, design and physicochemical applications, Academic Press, Boston, MAGoogle Scholar
  49. 49.
    Ristic VM (1983) Principles of acoustic devices. Wiley, New YorkGoogle Scholar
  50. 50.
    Nieuwenhuizen MS et al (1986) Transduction mechanism in SAW gas sensors. Electron Lett 22:184–185CrossRefGoogle Scholar
  51. 51.
    Wenzel SW, While RM (1989) Analytic comparison of the sensitivities of bulk-surface-, and flexural plate-mode ultrasonic gravimetric sensors. Appl Phys Lett 54:1976–1978ADSCrossRefGoogle Scholar
  52. 52.
    Nieuwenhuizen MS et al (1986) Transduction mechanism in SAW gas sensors. Electron Lett 22:184–185CrossRefGoogle Scholar
  53. 53.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933ADSCrossRefGoogle Scholar
  54. 54.
    Battiston FM, Ramseyer J-P, Lang HP, Baller MK, Gerber Ch, Gimzewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout, Sens Actuators B Chem 77:122–131CrossRefGoogle Scholar
  55. 55.
    Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton Jr, CL, Patel SV, Mlsna TE, McCorkle D, Warmack B (2003) Design and performance of a microcantilever-based hydrogen sensor. Sens Actuators B 88(2):120–131CrossRefGoogle Scholar
  56. 56.
    Hansen KM, Ji, H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73:1567–1571CrossRefGoogle Scholar
  57. 57.
    Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (2001) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739CrossRefGoogle Scholar
  58. 58.
    Betts TA, Tipple CA, Sepaniak MJ, Datskos PG (2000) Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films. Anal Chim Acta 422:89–99CrossRefGoogle Scholar
  59. 59.
    Senesac LR, Yi D, Greve A, Hales JH, Davis ZJ, Nicholson DM, Boisen A, Thundat T. (2009) Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102ADSCrossRefGoogle Scholar
  60. 60.
    Thundat T, Wachter EA, Sharp SL, Warmack RJ (1995) Detection of mercury-vapor using resonating microcantilevers. Appl Phys Lett 66(13):1695–1697ADSCrossRefGoogle Scholar
  61. 61.
    Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995) Vapor detection using resonating microcantilevers. Anal Chem 67(3):519–521CrossRefGoogle Scholar
  62. 62.
    Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) Detection of trinitrotoluene via deflagration on a microcantilever, J Appl Phys 95:5871–5875ADSCrossRefGoogle Scholar
  63. 63.
    Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter SR (1996) Remote infrared radiation detection using piezoresistive microcantilevers, Appl Phys Lett 69(20):2986–2988ADSCrossRefGoogle Scholar
  64. 64.
    Creaser C, Thomas P et al. (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. The Analyst 129:984–994ADSCrossRefGoogle Scholar
  65. 65.
    Ching W, William FS, Herbert HH Jr (2000) Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. Anal Chem 72(2):396–403CrossRefGoogle Scholar
  66. 66.
    Maggie T, Herbert HH Jr (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem 76(10):2741–2747CrossRefGoogle Scholar
  67. 67.
    Rhykerd CL, Hannum DW, Murray DW, Parmeter JE (1999) Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications, NIJ Guide 100–99, NCJ 178913, September 1999, available at: www.ojp.usdoj.gov/nij/pubs-sum/178913.htm
  68. 68.
    Dewa AS, Ko WH (1994) Biosensors. In: Sze SM (ed) Semiconductor sensors, Wiley, New York, pp 415–472Google Scholar
  69. 69.
    Gentry SJ (1988) Catalytic devices. In: Edmonds TE (ed) Chemical sensors, Chapman and Hall, New YorkGoogle Scholar
  70. 70.
    RAE Systems Inc., Theory and Operation of NDIR Sensors, Technical Note TN-169. rev 1 wh.04-02Google Scholar
  71. 71.
    Dybko A, Wroblewski W (2000) Fiber optic chemical sensors, www.ch.pw.edu.pl/∼dybko/csrg/fiber/operating.html
  72. 72.
    Seiler K, Simon W (1992) Principles and mechanisms of ion-selective optodes. Sensors Actuators B 6:295–298CrossRefGoogle Scholar
  73. 73.
    Walt DR (2000) Molecular biology: bead based fiber-optic arrays. Science 287(5452):451CrossRefGoogle Scholar
  74. 74.
    Dewa AS, Ko WH (1994) Biosensors. In: Sze SM (ed) Semiconductor sensors, Wiley, Inc. New York, pp 415–472Google Scholar
  75. 75.
    Gottuk DT, Hill SA, Schemel CF, Strehlen BD, Rose-Pehrsson SL, Shaffer RE, Tatem PA, Williams FW (1999) Identification of Fire Signatures for Shipboard Multi-criteria Fire Detection Systems. NRL/MR/6180-99-8386, Naval Research Laboratory, Washington, DC, pp 48–87Google Scholar
  76. 76.
    Einax JW, Zwanziger HW, Geib S (1997) Chemometrics in environmental analysis. VCH, Weinheim, Germany, pp 2–75CrossRefGoogle Scholar
  77. 77.
    Prasad L, Iyengar SS, Rao RL, Kashyap RL (1994) Fault-tolerant sensor integration using multiresolution decomposition. Phys Rev E 49(4):3452–3461ADSCrossRefGoogle Scholar
  78. 78.
    Cometto-Muñiz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48:719–725CrossRefGoogle Scholar
  79. 79.
    Wang P, Liu Q, Xua Y, Cai H, Li Y (2007) Olfactory and taste cell sensor and its applications in biomedicine. Sens Actuators A 139:131–138CrossRefGoogle Scholar
  80. 80.
    Nagle HT, Schiffman SS, Gutierrez-Osuna R (1998) The how and why of electronic noses, IEEE Spectrum 35:22–34CrossRefGoogle Scholar
  81. 81.
    Raman B, Meier DC, Evju JK, Semancik S (2009) Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens Actuators B 137:617–629CrossRefGoogle Scholar
  82. 82.
    Raman B, Hertz JL, Benkstein KD, Semancik S (2008) Bioinspired methodology for artificial olfaction. Anal Chem 80:8364CrossRefGoogle Scholar
  83. 83.
    Meier DC, Raman B, Semancik S (2009) Detecting chemical hazards with temperature-programmed microsensors: overcoming complex analytical problems with multidimensional databases. Annu Rev Anal Chem 2:463–84CrossRefGoogle Scholar
  84. 84.
    Edmonds TE (ed) (1988) Chemical sensors, Blackie and Son Ltd, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.San DiegoUSA

Personalised recommendations