Temperature Sensors

  • Jacob Fraden


From prehistoric times people were aware of heat and trying to assess its intensity by measuring temperature. Perhaps the simplest and certainly the most widely used phenomenon for temperature sensing is thermal expansion. This forms the basis of the liquid-in-glass thermometers. For the electrical transduction, different methods of sensing are employed. Some of them are the resistive, thermoelectric, semiconductive, optical, acoustic, and piezoelectric detectors.


Temperature Sensor Negative Temperature Coefficient Contact Sensor Reference Sensor Thermal Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fraden J, Ferlito RK (2007) Ear temperature monitor and method of temperature measurement. US Patent 7,306,565, 11 DecGoogle Scholar
  2. 2.
    Benedict RP (1984) Fundamentals of temperature, pressure, and flow measurements, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Callendar HL (1887) On the practical measurement of temperature. Philos Trans R Soc Lond 178:160ADSGoogle Scholar
  4. 4.
    Sapoff M (1999) Thermistor thermometers. In: Webster JG (ed) The measurement, instrumentation and sensors handbook. CRC Press, Boca Raton, FL, pp 32.25–32.41Google Scholar
  5. 5.
    Fraden J (2000) A two-point calibration of negative temperature coefficient thermistors. Rev Sci Instrum 71(4):1901–1905ADSCrossRefGoogle Scholar
  6. 6.
    Steinhart JS, Hart SR (1968) Deep Sea Res 15:497Google Scholar
  7. 7.
    Mangum BW (1983) Rev Sci Instrum 54(12):1687ADSCrossRefGoogle Scholar
  8. 8.
    Sapoff M, Siwek WR, Johnson HC, Slepian J, Weber S (1982) In: Schooley JE (ed) Temperature. Its measurement and control in science and industry. American Institute of Physics, Washington, DC, vol 5, p 875Google Scholar
  9. 9.
    Villemant CM, Gaultier M (1971) Thermistor. US Patent 3,568,125, 2 MarGoogle Scholar
  10. 10.
    Silver EH et al (2007) Method for making an epitaxial germanium temperature sensor. US Patent 7,232,487, 19 JunGoogle Scholar
  11. 11.
    Tosaki H et al Thick film thermistor composition. US Patent 4,587,040, 6 May 1986Google Scholar
  12. 12.
    Keystone NTC PTC thermistors (1984) Catalogue © Keystone Carbon Company, St. Marys, PAGoogle Scholar
  13. 13.
    Caldwell FR (1962) Thermocouple materials. NBS monograph 40. National Bureau of Standards. March 1Google Scholar
  14. 14.
    Manual on the use of thermocouples in temperature measurement (1993) 4th edn. ASTM Manual Series: MNL: 12–93, ASTM, Philadelphia, PLGoogle Scholar
  15. 15.
    Sachse HB (1975) Semiconducting temperature sensors and their applications. Wiley-Interscience, New YorkGoogle Scholar
  16. 16.
    Timko MP (1976) A two terminal IC temperature transducer. IEEE J Solid-State Circuits SC-11:784–788CrossRefGoogle Scholar
  17. 17.
    Wickersheim KA, Sun MH (1987) Fluoroptic thermometry. Med Electron 84–91Google Scholar
  18. 18.
    Fernicola VC et al (2000) Investigations on exponential lifetime measurements for fluorescence thermometry. Rev Sci Instrum 71(7):2938–2943ADSCrossRefGoogle Scholar
  19. 19.
    Schultheis L, Amstutz H, Kaufmann M (1988) Fiber-optic temperature sensing with ultrathin silicon etalons. Opt Lett 13(9):782–784ADSCrossRefGoogle Scholar
  20. 20.
    Wolthuis RA, Mitchell GL, Saaski E, Hartl JC, Afromowitz MA (1991) Development of medical pressure and temperature sensors employing optical spectral modulation. IEEE Trans Biomed Eng 38(10):974–981CrossRefGoogle Scholar
  21. 21.
    Beheim G, Fritsch K, Azar MT (1990) A sputtered thin film fiber optic temperature sensor. Sensors 37–43Google Scholar
  22. 22.
    Hao T, Lui CC (1990) An optical fiber temperature sensor using a thermochromic solution. Sens Actuators A 24:213–216CrossRefGoogle Scholar
  23. 23.
    Williams J (1990) Some techniques for direct digitization of transducer outputs, AN7. Linear technology application handbookGoogle Scholar
  24. 24.
    Venema A et al (1990) Acoustic-wave physical-electronic systems for sensors. In: Fortschritte der Acustik der 16. Deutsche Arbeitsgemeinschaft für Akustik, pp 1155–1158Google Scholar
  25. 25.
    Vellekoop MJ et al (1990) All-silicon plate wave oscillator system for sensor applications. In: Proc IEEE Ultrasonic Symp, New YorkGoogle Scholar
  26. 26.
    Smith WL, Spencer LJ (1963) Quartz crystal thermometer for measuring temperature deviation in the 10.3 to 10.6°C range. Rev Sci Instrum 268–270Google Scholar
  27. 27.
    Hammond DL, Benjaminson A (1962) Linear quartz thermometer. Instrum Control Syst 38:115Google Scholar
  28. 28.
    Ziegler H (1984) A low-cost digital sensor system. Sens Actuators 5:169–178CrossRefGoogle Scholar
  29. 29.
    Ueda T, Kohsaka F, Iino T, Yamazaki D (1986) Temperature sensor utilizing quartz tuning fork resonator. In: Proc 40th annual frequency control symposium, Philadelphia, PA, pp 224–229Google Scholar
  30. 30.
    EerNisse EP, Wiggins RB (1986) A resonator temperature transducer with no activity dips. In: Proc 40th annual frequency control symposium, Philadelphia, PA, pp 216–223, 1986Google Scholar
  31. 31.
    Sola-Laguna LM et al (1998) Thick-film NTC thermistor series for sensor and temperature compensation application. In: IMAPSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.San DiegoUSA

Personalised recommendations