Hereditary Photodermatoses

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 685)


Photodermatoses are defined as the abnormal reactions of the skin to photons, usually those of wavelengths found in sunlight. These reactions can be caused by a wide variety of reasons, including defects in repair of light-induced DNA lesions, the interaction of certain chemicals or medications with sunlight to produce toxic mediators and photo-induced immune reactions. In this chapter we will describe photodermatoses that are associated with hereditary conditions. These can be subdivided into several groups: dermatoses caused by abnormal metabolic conditions, idiopathic photodermatoses, defects in cancer suppressor genes not directly involved in DNA repair but that predispose to photodistributed tumors and photosensitivity due to abnormalities in DNA repair pathways. Special emphasis will be placed on the relatively recently described UV-sensitive sy


Nucleotide Excision Repair Xeroderma Pigmentosum Cyclobutane Pyrimidine Dimer Acute Intermittent Porphyria Cockayne Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kvam E, Tyrrell RM. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 1997; 18(12):2379.PubMedCrossRefGoogle Scholar
  2. 2.
    Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 2005; 571(1–2):3.PubMedGoogle Scholar
  3. 3.
    Kim KJ, Chakrabarty I, Li GZ et al. Modulation of base excision repair alters cellular sensitivity to UVA1 but not to UVB1. Photochem Photobiol 2002; 75(5):507.PubMedCrossRefGoogle Scholar
  4. 4.
    Kunisada M, Sakumi K, Tominaga Y et al. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 2005; 65(14):6006.PubMedCrossRefGoogle Scholar
  5. 5.
    Vens C, Dahmen-Mooren E, Verwijs-Janssen M et al. The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res 2002; 30(13):2995.PubMedCrossRefGoogle Scholar
  6. 6.
    D’Errico M, Parlanti E, Teson M et al. New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J 2006; 25(18):4305.PubMedCrossRefGoogle Scholar
  7. 7.
    Rünger T, Epe B, Moller K. Repair of ultraviolet B and singlet oxygen-induced DNA damage in xeroderma pigmentosum cells. J Invest Dermatol 1995; 104(1):68.PubMedCrossRefGoogle Scholar
  8. 8.
    Dumaz N, Drougard C, Sarasin A et al. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci USA 1993; 90(22):10529.PubMedCrossRefGoogle Scholar
  9. 9.
    Azmanov DN, Kowalczuk S, Rodgers H et al. Further evidence for allelic heterogeneity in Hartnup disorder. Human Mut 2008; 29(10):1217.CrossRefGoogle Scholar
  10. 10.
    Smith DW, Lemli L, Opitz JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr 1964; 64:210.PubMedCrossRefGoogle Scholar
  11. 11.
    Yu H, Patel SB. Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet 2005; 68(5):383.PubMedCrossRefGoogle Scholar
  12. 12.
    Chignell CF, Kukielczak BM, Sik RH et al. Ultraviolet A sensitivity in Smith-Lemli-Opitz syndrome: Possible involvement of cholesta-5,7,9(11)-trien-3 beta-ol. Free Radic Biol Med 2006; 41(2):339.PubMedCrossRefGoogle Scholar
  13. 13.
    Kindler T. Congenital poikiloderma with traumatic bulla formation and progressive cutaneous atrophy. Br J Dermatol 1954; 66(3):104.PubMedCrossRefGoogle Scholar
  14. 14.
    Yasukawa K, Sato-Matsumura KC, McMillan J et al. Exclusion of COL7A1 mutation in Kindler syndrome. J Am Acad Dermatol 2002; 46(3):447.PubMedCrossRefGoogle Scholar
  15. 15.
    Siegel DH, Ashton GH, Penagos HG et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am J Hum Genet 2003; 73(1):174.PubMedCrossRefGoogle Scholar
  16. 16.
    Jobard F, Bouadjar B, Caux F et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum Mol Genet 2003; 12(8):925.PubMedCrossRefGoogle Scholar
  17. 17.
    White SJ, McLean WH. Kindler surprise: mutations in a novel actin-associated protein cause Kindler syndrome. J Dermatol Sci 2005; 38(3):169.PubMedCrossRefGoogle Scholar
  18. 18.
    Schnell AH, Elston RC, Hull PR et al. Major gene segregation of actinic prurigo among North American Indians in Saskatchewan. Am J Med Genet 2000; 92(3):212.PubMedCrossRefGoogle Scholar
  19. 19.
    Grabczynska SA, McGregor JM, Kondeatis E et al. Actinic prurigo and polymorphic light eruption: common pathogenesis and the importance of HLA-DR4/DRB1*0407. Br J Dermatol 1999; 140(2):232.PubMedCrossRefGoogle Scholar
  20. 20.
    Morison WL, Stern RS. Polymorphous light eruption: a common reaction uncommonly recognized. Acta Derm Venereol 1982; 62(3):237.PubMedGoogle Scholar
  21. 21.
    Horkay I, Emri G, Varga V et al. Environmental dermatology in childhood: photosensitivity. Pediatric Health 2008; 2(6):749.Google Scholar
  22. 22.
    Botto NC, Warshaw EM. Solar urticaria. J Am Acad Dermatol 2008; 59(6):909.PubMedCrossRefGoogle Scholar
  23. 23.
    Hawk JL. Chronic actinic dermatitis. Photodermatol Photoimmunol Photomed 2004; 20(6):312.PubMedCrossRefGoogle Scholar
  24. 24.
    Gupta G, Mohamed M, Kemmett D. Familial hydroa vacciniforme. Br J Dermatol 1999; 140(1):124.PubMedCrossRefGoogle Scholar
  25. 25.
    Shafei-Benaissa E, Savage JR, Babin P et al. The naevoid basal-cell carcinoma syndrome (Gorlin syndrome) is a chromosomal instability syndrome. Mutat Res 1998; 397(2):287.PubMedGoogle Scholar
  26. 26.
    Bodak N, Queille S, Avril MF et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci USA 1999; 96(9):5117.PubMedCrossRefGoogle Scholar
  27. 27.
    Giglia G, Dumaz N, Drougard C et al. p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Res 1998; 58(19):4402.PubMedGoogle Scholar
  28. 28.
    Tsao H, Niendorf K. Genetic testing in hereditary melanoma. J Am Acad Dermatol 2004; 51(5):803.PubMedCrossRefGoogle Scholar
  29. 29.
    de Snoo F, Grui N. Familial melanoma. In: Huret J-L, ed. Atlas Genet Cytogenet Oncol Haematol Poitiers 2005.Google Scholar
  30. 30.
    Brosh RM, Jr, Bohr VA. Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res 2007; 35(22):7527.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu S, George S. Rothmund-Thompson syndrome. In: emedicine 2007.Google Scholar
  32. 32.
    Siitonen HA, Kopra O, Kaariainen H et al. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 2003; 12(21):2837.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmad S, ed. Molecular Mechanisms of Ataxia Telangiectasia. Austin: Landes Bioscience, 2009.Google Scholar
  34. 34.
    Ahmad S, Hanaoka F, eds. Molecular Mechanisms of Xeroderma Pigmentosum. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2008.Google Scholar
  35. 35.
    Ahmad S, ed. Molecular Mechanisms of Cockayne Syndrome. Austin: Landes Bioscience, 2009.Google Scholar
  36. 36.
    Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 1987; 123(2):241.PubMedCrossRefGoogle Scholar
  37. 37.
    Greenhaw GA, Hebert A, Duke-Woodside ME et al. Xeroderma pigmentosum and Cockayne syndrome: overlapping clinical and biochemical phenotypes. Am J Hum Genet 1992; 50(4):677.PubMedGoogle Scholar
  38. 38.
    Colella S, Nardo T, Botta E et al. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis-cacchione variant of xeroderma pigmentosum. Hum Mol Genet 2000; 9(8):1171.PubMedCrossRefGoogle Scholar
  39. 39.
    Itoh T, Cleaver JE, Yamaizumi M. Cockayne syndrome complementation group B associated with xeroderma pigmentosum phenotype. Hum Genet 1996; 97(2):176.PubMedCrossRefGoogle Scholar
  40. 40.
    Hashimoto S, Egawa K, Ihn H et al. A new disorder in UV-induced skin cancer with defective DNA repair distinct from xeroderma pigmentosum or Cockayne syndrome. J Invest Dermatol 2008; 128(3):694.PubMedGoogle Scholar
  41. 41.
    Itoh T, Fujiwara Y, Ono T et al. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am J Hum Genet 1995; 56(6):1267.PubMedGoogle Scholar
  42. 42.
    Spivak G. UV-sensitive syndrome. Mutat Res 2005; 577:162.Google Scholar
  43. 43.
    Spivak G, Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst) 2006; 5(1):13.CrossRefGoogle Scholar
  44. 44.
    Nardo T, Oneda R, Spivak G et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci USA 2009.Google Scholar
  45. 45.
    Itoh T, Linn S, Ono T et al. Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J Invest Dermat 2000; 114(5):1022.CrossRefGoogle Scholar
  46. 46.
    Horibata K, Iwamoto Y, Kuraoka I et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 2004; 101:15410.PubMedCrossRefGoogle Scholar
  47. 47.
    Spivak G. The many faces of Cockayne syndrome.(comment). Proc Natl Acad Sci USA 2004; 101(43):15273.PubMedCrossRefGoogle Scholar
  48. 48.
    Newman JC, Bailey AD, Fan HY et al. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 2008; 4(3):e1000031.PubMedCrossRefGoogle Scholar
  49. 49.
    Laugel V, Dalloz C, Stary A et al. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur J Hum Genet 2008; 16(3):320.PubMedCrossRefGoogle Scholar
  50. 50.
    Tanaka K, Itoh S. Transcription-coupled repair and its defect in cockayne syndrome. In: Ahmad S, ed. Molecular Mechanisms of Cockayne Syndrome. Austin: Landes. in press, 2009.Google Scholar
  51. 51.
    Hashimoto S, Suga T, Kudo E et al. Adult-onset neurological degeneration in a patient with Cockayne syndrome and a null mutation in the CSB gene. J Invest Dermatol 2008; 128(6):1597.PubMedCrossRefGoogle Scholar
  52. 52.
    Colella S, Nardo T, Botta E et al. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis-cacchione variant of xeroderma pigmentosum. Hum Mol Genet 2000; 9(8):1171.PubMedCrossRefGoogle Scholar
  53. 53.
    Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9(12):958.PubMedCrossRefGoogle Scholar
  54. 54.
    Anindya R, Aygun O, Svejstrup JQ. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Molecular Cell 2007; 28(3):386.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations