Skip to main content

Spinocerebellar Ataxia with Axonal Neuropathy

  • Chapter
Diseases of DNA Repair

Abstract

Spinocerebellar ataxia with axonal neuropathy (SCAN1) is an autosomal recessive disorder caused by a specific point mutation (c.1478A>G, p.H493R) in the tyrosyl-DNA phosphodiesterase (TDP1) gene. Functional and genetic studies suggest that this mutation, which disrupts the active site of the Tdp1 enzyme, causes disease by a combination of decreased catalytic activity and stabilization of the normally transient covalent Tdp1-DNA intermediate. This covalent reaction intermediate can form during the repair of stalled topoisomerase I-DNA adducts or oxidatively damaged bases at the 3′ end of the DNA at a strand break. However, our current understanding of the biology of Tdp1 function in humans is limited and does not allow us to fully elucidate the disease mec

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis 2000; 21:453–60.

    Article  PubMed  Google Scholar 

  2. O’Driscoll M, Jeggo PA. The role of double-strand break repair—insights from human genetics. Nat Rev Genet 2006; 7:45–54.

    Article  PubMed  Google Scholar 

  3. Friedberg EC, Walker GC, Siede W et al. Disease states associated with defective biological responses to DNA damage. DNA Repair and Mutagenesis. Washington: ASM Press, 2006;863–1080.

    Google Scholar 

  4. Subba Rao K. Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 2007; 3:162–72.

    Article  PubMed  Google Scholar 

  5. Barzilai A. The contribution of the DNA damage response to neuronal viability. Antioxid Redox Signal 2007; 9:211–8.

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Lee HM, Greeley GH Jr et al. Accumulation of oxidatively generated DNA damage in the brain: a mechanism of neurotoxicity. Free Radic Biol Med 2007; 42:385–93.

    Article  CAS  PubMed  Google Scholar 

  7. Lombard DB, Chua KF, Mostoslavsky R et al. DNA repair, genome stability and aging. Cell 2005; 120:497–512.

    Article  CAS  PubMed  Google Scholar 

  8. Gorbunova V, Seluanov A, Mao Z et al. Changes in DNA repair during aging. Nucleic Acids Res 2007; 35:7466–74.

    Article  CAS  PubMed  Google Scholar 

  9. Imam SZ, Karahalil B, Hogue BA et al. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging 2006; 27:1129–36.

    Article  CAS  PubMed  Google Scholar 

  10. Intano GW, Cho EJ, McMahan CA et al. Age-related base excision repair activity in mouse brain and liver nuclear extracts. J Gerontol A Biol Sci Med Sci 2003; 58:205–11.

    PubMed  Google Scholar 

  11. Lu T, Pan Y, Kao SY et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429:883–91.

    Article  CAS  PubMed  Google Scholar 

  12. Rutten BP, Schmitz C, Gerlach OH et al. The aging brain: accumulation of DNA damage or neuron loss? Neurobiol Aging 2007; 28:91–8.

    Article  CAS  PubMed  Google Scholar 

  13. Katyal S, McKinnon PJ. DNA strand breaks, neurodegeneration and aging in the brain. Mech Ageing Dev 2008; 129:483–91.

    Article  CAS  PubMed  Google Scholar 

  14. Takashima H, Boerkoel CF, John J et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002; 32:267–72.

    Article  CAS  PubMed  Google Scholar 

  15. Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci USA 2001; 98:12009–14.

    Article  CAS  PubMed  Google Scholar 

  16. Interthal H, Chen HJ, Kehl-Fie TE et al. SCAN1 mutant Tdp1 accumulates the enzyme-DNA intermediate and causes camptothecin hypersensitivity. EMBO J 2005; 24:2224–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hirano R, Interthal H, Huang C et al. Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation? EMBO J 2007; 26:4732–43.

    Article  CAS  PubMed  Google Scholar 

  18. Pouliot JJ, Yao KC, Robertson CA et al. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 1999; 286:552–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bertoncini CR, Meneghini R. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3′-phosphoglycolate termini. Nucleic Acids Res 1995; 23:2995–3002.

    Article  CAS  PubMed  Google Scholar 

  20. Henner WD, Rodriguez LO, Hecht SM et al. Gamma ray induced deoxyribonucleic acid strand breaks. 3′ Glycolate termini. J Biol Chem 1983; 258:711–3.

    CAS  PubMed  Google Scholar 

  21. Povirk LF. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat Res 1996; 355:71–89.

    PubMed  Google Scholar 

  22. Inamdar KV, Pouliot JJ, Zhou T et al. Conversion of phosphoglycolate to phosphate termini on 3′ overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1. J Biol Chem 2002; 277:27162–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou T, Lee JW, Tatavarthi H et al. Deficiency in 3′-phosphoglycolate processing in human cells with a hereditary mutation in tyrosyl-DNA phosphodiesterase (TDP1). Nucleic Acids Res 2005; 33:289–97.

    Article  CAS  PubMed  Google Scholar 

  24. Champoux JJ. DNA topoisomerases: structure, function and mechanism. Annu Rev Biochem 2001; 70:369–413.

    Article  CAS  PubMed  Google Scholar 

  25. Pommier Y, Pourquier P, Fan Y et al. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1998; 1400:83–105.

    CAS  PubMed  Google Scholar 

  26. Stewart L, Redinbo MR, Qiu X et al. A model for the mechanism of human topoisomerase I. Science 1998; 279:1534–41.

    Article  CAS  PubMed  Google Scholar 

  27. Pommier Y, Redon C, Rao VA et al. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 2003; 532:173–203.

    CAS  PubMed  Google Scholar 

  28. Pourquier P, Pommier Y. Topoisomerase I-mediated DNA damage. Adv Cancer Res 2001; 80:189–216.

    Article  CAS  PubMed  Google Scholar 

  29. Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989; 49:5077–82.

    CAS  PubMed  Google Scholar 

  30. Tsao YP, Russo A, Nyamuswa G et al. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res 1993; 53:5908–14.

    CAS  PubMed  Google Scholar 

  31. Wu J, Liu LF. Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 1997; 25:4181–6.

    Article  CAS  PubMed  Google Scholar 

  32. Debethune L, Kohlhagen G, Grandas A et al. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res 2002; 30:1198–204.

    Article  CAS  PubMed  Google Scholar 

  33. El-Khamisy SF, Saifi GM, Weinfeld M et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005; 434:108–13.

    Article  CAS  PubMed  Google Scholar 

  34. Yang SW, Burgin AB Jr, Huizenga BN et al. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci USA 1996; 93:11534–9.

    Article  CAS  PubMed  Google Scholar 

  35. Interthal H, Chen HJ, Champoux JJ. Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 2005; 280:36518–28.

    Article  CAS  PubMed  Google Scholar 

  36. Ponting CP, Kerr ID. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci 1996; 5:914–22.

    Article  CAS  PubMed  Google Scholar 

  37. Stuckey JA, Dixon JE. Crystal structure of a phospholipase D family member. Nat Struct Biol 1999; 6:278–84.

    Article  CAS  PubMed  Google Scholar 

  38. Davies DR, Interthal H, Champoux JJ et al. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure (Camb) 2002; 10:237–48.

    Article  CAS  Google Scholar 

  39. Raymond AC, Rideout MC, Staker B et al. Analysis of human tyrosyl-DNA phosphodiesterase I catalytic residues. J Mol Biol 2004; 338:895–906.

    Article  CAS  PubMed  Google Scholar 

  40. Davies DR, Interthal H, Champoux JJ et al. Insights into substrate binding and catalytic mechanism of human tyrosyl-DNA phosphodiesterase (Tdp1) from vanadate and tungstate-inhibited structures. J Mol Biol 2002; 324:917–32.

    Article  CAS  PubMed  Google Scholar 

  41. Hawkins AJ, Subler MA, Akopiants K et al. In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation. DNA Repair (Amst) 2009; 8:654–63.

    Article  CAS  Google Scholar 

  42. Katyal S, el-Khamisy SF, Russell HR et al. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J 2007; 26:4720–31.

    Article  CAS  PubMed  Google Scholar 

  43. Deng C, Brown JA, You D et al. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 2005; 170:591–600.

    Article  Google Scholar 

  44. Dunlop J, Morin X, Corominas M et al. glaikit is essential for the formation of epithelial polarity and neuronal development. Curr Biol 2004; 14:2039–45.

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Pouliot JJ, Nash HA. Repair of topoisomerase I covalent complexes in the absence of the tyrosyl-DNA phosphodiesterase Tdp1. Proc Natl Acad Sci USA 2002; 99:14970–5.

    Article  CAS  PubMed  Google Scholar 

  46. Vance JR, Wilson TE. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc Natl Acad Sci USA 2002; 99:13669–74.

    Article  CAS  PubMed  Google Scholar 

  47. El-Khamisy SF, Katyal S, Patel P et al. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin. DNA Repair (Amst) 2009; 8:760–6.

    Article  CAS  Google Scholar 

  48. Liu C, Zhou S, Begum S et al. Increased expression and activity of repair genes TDP1 and XPF in nonsmall cell lung cancer. Lung Cancer 2007; 55:303–11.

    Article  PubMed  Google Scholar 

  49. McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 2007; 8:37–55.

    Article  CAS  PubMed  Google Scholar 

  50. Dexheimer TS, Antony S, Marchand C et al. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 2008; 8:381–9.

    CAS  PubMed  Google Scholar 

  51. Turashvili G, Kalloger S, Gelmon K et al. Subcellular protein expression pattern of the DNA repair enzyme Tdp1 is prognostic in breast cancer 2009. In Press.

    Google Scholar 

  52. Davies DR, Interthal H, Champoux JJ et al. Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA and a topoisomerase I-derived peptide. Chem Biol 2003; 10:139–47.

    Article  CAS  PubMed  Google Scholar 

  53. Davies DR, Interthal H, Champoux JJ et al. Explorations of peptide and oligonucleotide binding sites of tyrosyl-DNA phosphodiesterase using vanadate complexes. J Med Chem 2004; 47:829–37.

    Article  CAS  PubMed  Google Scholar 

  54. Liao Z, Thibaut L, Jobson A et al. Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 2006; 70:366–72.

    CAS  PubMed  Google Scholar 

  55. Antony S, Marchand C, Stephen AG et al. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res 2007; 35:4474–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius F. Boerkoel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Walton, C., Interthal, H., Hirano, R., Salih, M.A.M., Takashima, H., Boerkoel, C.F. (2010). Spinocerebellar Ataxia with Axonal Neuropathy. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_7

Download citation

Publish with us

Policies and ethics