Skip to main content

Early-Onset Ataxia with Ocular Motor Apraxia and Hypoalbuminemia/Ataxia with Oculomotor Apraxia

  • Chapter
Diseases of DNA Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

DNA single-strand breaks (SSBs) are non-overlapping discontinuities in strands of a DNA duplex. Significant attention has been given on the DNA SSB repair (SSBR) system in neurons, because the impairment of the SSBR causes human neurodegenerative disorders, including early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH), also known as ataxia-oculomotor apraxia Type 1 (AOA1). EAOH/AOA1 is characterized by early-onset slowly progressive ataxia, ocular motor apraxia, peripheral neuropathy and hypoalbuminemia. Neuropathological examination reveals severe loss of Purkinje cells and moderate neuronal loss in the anterior horn and dorsal root ganglia. EAOH/AOA1 is caused by the mutation in the APTX gene encoding the aprataxin (APTX) protein. APTX interacts with X-ray repair cross-complementing group 1 protein, which is a scaffold protein in SSBR. In addition, APTX-defective cells show increased sensitivity to genotoxic agents, which result in SSBs. These results indicate an important role of APTX in SSBR. SSBs are usually accompanied by modified or damaged 5′- and 3′-ends at the break site. Because these modified or damaged ends are not suitable for DNA ligation, they need to be restored to conventional ends prior to subsequent repair processes. APTX restores the 5′-adenylate monophosphate, 3′-phosphates and 3′-phosphoglycolate ends. The loss of function of APTX results in the accumulation of SSBs, consequently leading to neuronal cell dysfunction and

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks PJ. DNA repair in neural cells: basic science and clinical implications. Mutat Res 2002; 509:93–108.

    CAS  PubMed  Google Scholar 

  2. Caldecott KW. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Bioessays 2001; 23:447–455.

    Article  CAS  PubMed  Google Scholar 

  3. Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst) 2003: 2:955–969.

    Article  CAS  Google Scholar 

  4. Caldecott KW. DNA single-strand breaks and neurodegeneration. DNA Repair (Amst) 2004; 3:875–882.

    Article  CAS  Google Scholar 

  5. Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet 2008: 9:619–631.

    CAS  PubMed  Google Scholar 

  6. Ahel I, Rass U, El-Khamisy SF et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006: 443:713–716.

    Article  CAS  PubMed  Google Scholar 

  7. El-Khamisy SF, Saifi GM, Weinfeld M et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005: 434:108–113.

    Article  CAS  PubMed  Google Scholar 

  8. Date H, Onodera O, Tanaka H et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001: 29:184–188.

    Article  CAS  PubMed  Google Scholar 

  9. Moreira MC, Barbot C, Tachi N et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001: 29:189–193.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi T, Tada M, Igarashi S et al. Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3′-phosphate and 3′-phosphoglycolate ends. Nucleic Acids Res 2007: 35:3797–3809.

    Article  CAS  PubMed  Google Scholar 

  11. Takashima H, Boerkoel CF, John J et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002; 32:267–272.

    Article  CAS  PubMed  Google Scholar 

  12. El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006: 21:219–224.

    Article  CAS  PubMed  Google Scholar 

  13. El-Khamisy SF, Caldecott KW. DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1. Neuroscience 2007: 145:1260–1266.

    Article  CAS  PubMed  Google Scholar 

  14. Reynolds JJ, El-Khamisy SF, Katyal S et al. Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol 2009: 29:1354–1362.

    Article  CAS  PubMed  Google Scholar 

  15. Leigh RJ, Zee DS. The neurology of eye movements. Philadelphia 1999: xi, 281.

    Google Scholar 

  16. Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol 1999: 46:287–295.

    Article  CAS  PubMed  Google Scholar 

  17. Le Ber I, Moreira MC, Rivaud-Pechoux S et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 2003: 126:2761–2772.

    Article  PubMed  Google Scholar 

  18. Inoue N, Izumi K, Mawatari S et al. Congenital ocular motor apraxia and cerebellar degeneration— report of two cases. Rinsho Shinkeigaku 1971: 11:855–861.

    Google Scholar 

  19. Kawasaki S, Ideta T, Ueno H et al. [Three cases of autosomal recessively inherited neuropathy with cerebellar ataxia, optic atrophy and hyperlipidemia (author’s transl)]. Rinsho Shinkeigaku 1982; 22:15–23.

    CAS  PubMed  Google Scholar 

  20. Uekawa K, Yuasa T, Kawasaki S et al. [A hereditary ataxia associated with hypoalbuminemia and hyperlipidemia—a variant form of Friedreich’s disease or a new clinical entity?]. Rinsho Shinkeigaku 1992: 32:1067–1074.

    CAS  PubMed  Google Scholar 

  21. Kubota H, Sunohara N, Iwabuchi K et al. [Familial early onset cerebellar ataxia with hypoalbuminemia]. No To Shinkei 1995: 47:289–294.

    CAS  PubMed  Google Scholar 

  22. Fukuhara N, Nakajima T, Sakajiri K et al. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): a new disease. J Neurol Sci 1995: 133:140–151.

    Article  CAS  PubMed  Google Scholar 

  23. Hanihara T, Kubota H, Amano N et al. [Siblings of early onset cerebellar ataxia with hypoalbuminemia]. Rinsho Shinkeigaku 1995: 35:83–86.

    CAS  PubMed  Google Scholar 

  24. Sekijima Y, Ohara S, Nakagawa S et al. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci 1998: 158:30–37.

    Article  CAS  PubMed  Google Scholar 

  25. Tachi N, Kozuka N, Ohya K et al. Hereditary cerebellar ataxia with peripheral neuropathy and mental retardation. Eur Neurol 2000: 43:82–87.

    Article  CAS  PubMed  Google Scholar 

  26. Koike R, Tanaka H, Tsuji S. Early onset ataxia associated with hypoalbuminemia. Neurol Med 1998; 48:237–242.

    Google Scholar 

  27. Barbot C, Coutinho P, Chorao R et al. Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 2001: 58:201–205.

    Article  CAS  PubMed  Google Scholar 

  28. Moreira MC, Barbot C, Tachi N et al. Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13 and evidence for genetic heterogeneity. Am J Hum Genet 2001; 68:501–508.

    Article  CAS  PubMed  Google Scholar 

  29. Aicardi J, Barbosa C, Andermann E et al. Ataxia-ocular motor apraxia: a syndrome mimicking ataxiatelangiectasia. Ann Neurol 1988: 24:497–502.

    Article  CAS  PubMed  Google Scholar 

  30. Aicardi J. Aicardi syndrome. Brain Dev 2005: 27:164–171.

    Article  PubMed  Google Scholar 

  31. Di Donato S, Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Neurol Sci 2001: 22:219–228.

    Article  PubMed  Google Scholar 

  32. Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007: 6:245–257.

    Article  CAS  PubMed  Google Scholar 

  33. Criscuolo C, Mancini P, Sacca F et al. Ataxia with oculomotor apraxia type 1 in Southern Italy: late onset and variable phenotype. Neurology 2004: 63:2173–2175.

    CAS  PubMed  Google Scholar 

  34. Habeck M, Zuhlke C, Bentele KH et al. Aprataxin mutations are a rare cause of early onset ataxia in Germany. J Neurol 2004: 251:591–594.

    Article  CAS  PubMed  Google Scholar 

  35. Amouri R, Moreira MC, Zouari M et al. Aprataxin gene mutations in Tunisian families. Neurology 2004: 63:928–929.

    CAS  PubMed  Google Scholar 

  36. Tsao CY, Paulson G. Type 1 ataxia with oculomotor apraxia with aprataxin gene mutations in two American children. J Child Neurol 2005; 20:619–620.

    PubMed  Google Scholar 

  37. Quinzii CM, Kattah AG, Naini A et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005: 64:539–541.

    CAS  PubMed  Google Scholar 

  38. Tranchant C, Fleury M, Moreira MC et al. Phenotypic variability of aprataxin gene mutations. Neurology 2003: 60:868–870.

    Article  CAS  PubMed  Google Scholar 

  39. Shimazaki H, Takiyama Y, Sakoe K et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 2002: 59:590–595.

    CAS  PubMed  Google Scholar 

  40. Ferrarini M, Squintani G, Cavallaro T et al. A novel mutation of aprataxin associated with ataxia ocular apraxia type 1: phenotypical and genotypical characterization. J Neurol Sci 2007: 260:219–224.

    Article  CAS  PubMed  Google Scholar 

  41. Mosesso P, Piane M, Palitti F et al. The novel human gene aprataxin is directly involved in DNA single-strand-break repair. Cell Mol Life Sci 2005: 62:485–491.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji S, Onodera O, Goto J et al. Sporadic ataxias in Japan—a population-based epidemiological study. Cerebellum 2008: 7:189–197.

    Article  CAS  PubMed  Google Scholar 

  43. Yokoseki A, Date H, Onodera O. Clinical features of early onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH). Neurol Med 2002: 57:108–112.

    Google Scholar 

  44. Criscuolo C, Mancini P, Menchise V et al. Very late onset in ataxia oculomotor apraxia type I. Ann Neurol 2005: 57:777.

    Article  CAS  PubMed  Google Scholar 

  45. Caldecott KW. DNA single-strand break repair and spinocerebellar ataxia. Cell 2003: 112:7–10.

    Article  CAS  PubMed  Google Scholar 

  46. Kuzmiak HA, Maquat LE. Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends Mol Med 2006: 12:306–316.

    Article  CAS  PubMed  Google Scholar 

  47. Baba Y, Uitti RJ, Boylan KB et al. Aprataxin (APTX) gene mutations resembling multiple system atrophy. Parkinsonism Relat Disord 2007: 13:139–142.

    Article  PubMed  Google Scholar 

  48. Sano Y, Date H, Igarashi S et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol 2004: 55:241–249.

    Article  CAS  PubMed  Google Scholar 

  49. Seidle HF, Bieganowski P, Brenner C. Disease-associated mutations inactivate AMP-lysine hydrolase activity of Aprataxin. J Biol Chem 2005: 280:20927–20931.

    Article  CAS  PubMed  Google Scholar 

  50. Hirano M, Nishiwaki T, Kariya S et al. Novel splice variants increase molecular diversity of aprataxin, the gene responsible for early-onset ataxia with ocular motor apraxia and hypoalbuminemia. Neurosci Lett 2004: 366:120–125.

    Article  CAS  PubMed  Google Scholar 

  51. Hirano M, Asai H, Kiriyama T et al. Short half-lives of ataxia-associated aprataxin proteins in neuronal cells. Neurosci Lett 2007: 419:184–187.

    Article  CAS  PubMed  Google Scholar 

  52. Sekijima Y, Hashimoto T, Onodera O et al. Severe generalized dystonia as a presentation of a patient with aprataxin gene mutation. Mov Disord 2003: 18:1198–1200.

    Article  PubMed  Google Scholar 

  53. Yoon G, Westmacott R, MacMillan L et al. Complete deletion of the aprataxin gene: ataxia with oculomotor apraxia type 1 with severe phenotype and cognitive deficit. J Neurol Neurosurg Psychiatry 2008: 79:234–236.

    Article  CAS  PubMed  Google Scholar 

  54. Onodera O. [DNA repair and neurodegeneration]. Rinsho Shinkeigaku 2005: 45:979–981.

    PubMed  Google Scholar 

  55. Onodera O. Spinocerebellar ataxia with ocular motor apraxia and DNA repair. Neuropathology 2006; 26:361–367.

    Article  PubMed  Google Scholar 

  56. Pandolfo M, Koenig M. Friereich’s Ataxia. London 1998;373-398.

    Google Scholar 

  57. Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements. Trans Am Acad Ophthalmol Otolaryngol 1952: 56:853–862.

    CAS  PubMed  Google Scholar 

  58. Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements. Am J Ophthalmol 1953: 36:433–441.

    CAS  PubMed  Google Scholar 

  59. Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain 1977: 100:581–599.

    Article  CAS  PubMed  Google Scholar 

  60. Sugawara M, Wada C, Okawa S et al. Purkinje cell loss in the cerebellar flocculus in patients with ataxia with ocular motor apraxia type 1/early-onset ataxia with ocular motor apraxia and hypoalbuminemia. Eur Neurol 2008: 59:18–23.

    Article  PubMed  Google Scholar 

  61. Makifuchi T, Fukuhara N. Pathology of early onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH). Neurol Med 2002: 57.

    Google Scholar 

  62. Shinmei Y, Yamanobe T, Fukushima J et al. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol 2002: 87:1836–1849.

    PubMed  Google Scholar 

  63. Fukushima K. Roles of the cerebellum in pursuit-vestibular interactions. Cerebellum 2003; 2:223–232.

    Article  PubMed  Google Scholar 

  64. Belton T, McCrea RA. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation. J Neurophysiol 2000: 84:1599–1613.

    CAS  PubMed  Google Scholar 

  65. Belton T, McCrea RA. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit. J Neurophysiol 2000: 84:1614–1626.

    CAS  PubMed  Google Scholar 

  66. Noda H. Cerebellar control of saccadic eye movements: its neural mechanisms and pathways. Jpn J Physiol 1991: 41:351–368.

    Article  CAS  PubMed  Google Scholar 

  67. Nagata T, Aoki M, Hasegawa T et al. [An autopsy case of atypical Friedreich’s ataxia with chronic idiopathic intestinal pseudo-obstruction]. Rinsho Shinkeigaku 2001: 41:412–417.

    CAS  PubMed  Google Scholar 

  68. Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 2004; 3:1187–1196.

    Article  CAS  Google Scholar 

  69. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 2004: 3:1219–1225.

    Article  CAS  Google Scholar 

  70. Le Ber I, Bouslam N, Rivaud-Pechoux S et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 2004: 127:759–767.

    Article  PubMed  Google Scholar 

  71. Sedgwick RP, Boder E. Ataxia-Telangiectasia. 1991: 60:347–423.

    Google Scholar 

  72. Watanabe M, Sugai Y, Concannon P et al. Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy and elevated level of serum creatine kinase, gamma-globulin and alpha-fetoprotein. Ann Neurol 1998: 44:265–269.

    Article  CAS  PubMed  Google Scholar 

  73. Takashima H. [Molecular genetics of inherited neuropathies]. Rinsho Shinkeigaku 2006: 46:1–18.

    PubMed  Google Scholar 

  74. Brenner C. Hint, Fhit, Gal T. Function, structure, evolution and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 2002; 41:9003–9014.

    Article  CAS  PubMed  Google Scholar 

  75. Kijas AW, Harris JL, Harris JM et al. Aprataxin forms a discrete branch in the HIT (histidine triad) superfamily of proteins with both DNA/RNA binding and nucleotide hydrolase activities. J Biol Chem 2006: 281:13939–13948.

    Article  CAS  PubMed  Google Scholar 

  76. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell 2007; 130:991–1004.

    Article  CAS  PubMed  Google Scholar 

  77. Gueven N, Becherel OJ, Kijas AW et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum Mol Genet 2004: 13:1081–1093.

    Article  CAS  PubMed  Google Scholar 

  78. Date H, Igarashi S, Sano Y et al. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem Biophys Res Commun 2004: 325:1279–1285.

    Article  CAS  PubMed  Google Scholar 

  79. Clements PM, Breslin C, Deeks ED et al. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair (Amst) 2004: 3:1493–1502.

    Article  CAS  Google Scholar 

  80. Hirano M, Yamamoto A, Mori T et al. DNA single-strand break repair is impaired in aprataxin-related ataxia. Ann Neurol 2007: 61:162–174.

    Article  CAS  PubMed  Google Scholar 

  81. Rass U, Ahel I, West SC. Actions of aprataxin in multiple DNA repair pathways. J Biol Chem 2007; 282:9469–9474.

    Article  CAS  PubMed  Google Scholar 

  82. Rass U, Ahel I, West SC. Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin. J Biol Chem 2008: 283:33994–34001.

    Article  CAS  PubMed  Google Scholar 

  83. Reynolds JJ, El-Khamisy SF, Caldecott KW. Short-patch single-strand break repair in ataxia oculomotor apraxia-1. Biochem Soc Trans 2009: 37:577–581.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou T, Lee JW, Tatavarthi H et al. Deficiency in 3′-phosphoglycolate processing in human cells with a hereditary mutation in tyrosyl-DNA phosphodiesterase (TDP1). Nucleic Acids Res 2005; 33:289–297.

    Article  CAS  PubMed  Google Scholar 

  85. El-Khamisy SF, Katyal S, Patel P et al. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin. DNA Repair (Amst) 2009.

    Google Scholar 

  86. Becherel OJ, Gueven N, Birrell GW et al. Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription. Hum Mol Genet 2006: 15:2239–2249.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Onodera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tada, M., Yokoseki, A., Sato, T., Makifuchi, T., Onodera, O. (2010). Early-Onset Ataxia with Ocular Motor Apraxia and Hypoalbuminemia/Ataxia with Oculomotor Apraxia. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_3

Download citation

Publish with us

Policies and ethics