Von Hippel Lindau Syndrome

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 685)


Von Hippel-Lindau syndrome (VHLS) is an autosomal dominant familial cancer syndrome arising from germ-line inactivation of the VHL gene on the short arm of chromosome 3. VHLS manifests in a myriad of hyper-vascular tumors of both benign and malignant nature. Incidence of VHLS is roughly 1 in 36,000 live births and has over 90% penetrance by the age of 65. Improved understanding of the natural history and biology of VHLS has led to the introduction of screening protocols, early interventions and improved treatments, all of which resulted in a substantially improved prognosis for this disease. Further details regarding variegated molecular pathways and mechanisms of VHLS are emerging with the subsequent advent of novel treatment protocols that are currently in clinical


Renal Cell Carcinoma Hypoxia Induce Factor Primary Cilium Clear Cell Renal Carcinoma Retinal Hemangioblastomas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collins E. Intraocular growths (two cases, brother and sister, with peculiar vascular new growth, probably retinal, affecting both eyes). Trans Ophthalmol Soc UK 1894; 14:141–149.Google Scholar
  2. 2.
    Hippel Ev. Ueber eine sehr seltene erkrankung der nethat. Graefe Arch Ophthalmol 1904; 59:83–106.Google Scholar
  3. 3.
    Lindau A. Zur frage der angiomatosis retinai und ihrer hirncomplikation. Acta Ophthalmol 1927; 4:193–226.Google Scholar
  4. 4.
    Davison C, Brock S, Cyke CG. Retinal and central nervous hemangioblastomatosis with visceral changes (von Hippel-Lindau’s disease). Bull Neurol Inst New York 1936; 5:72–93.Google Scholar
  5. 5.
    Glushien AS, Mansuy MM, Littman DS. Pheochromocytoma. Its relationship to the neurocutaneous syndrome. AM J Med 1953; 14:318–27.PubMedGoogle Scholar
  6. 6.
    Melmon KL, Rosen SW. Lindau’s disease: review of the literature and study of a large kindred. Am J Med 1964; 36:595–617.PubMedGoogle Scholar
  7. 7.
    Manski TJ, Heffner DK, Glenn GM et al. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel Lindau disease. J Am Med Assoc 1997; 277:1461–1466.Google Scholar
  8. 8.
    Maher ER, Kaelin WG Jr. von Hippel-Lindau disease. Medicine 1997; 76:381–391.PubMedGoogle Scholar
  9. 9.
    Seizinger BR et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988; 332:268–269.PubMedGoogle Scholar
  10. 10.
    Latif F et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260:1317–1320.PubMedGoogle Scholar
  11. 11.
    Woodward E et al. Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 2000; 65:253–265.PubMedGoogle Scholar
  12. 12.
    Chen F et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 1995; 5:66–75.PubMedGoogle Scholar
  13. 13.
    Zbar B et al. Germline mutations in the von Hipple-Lindau (VHL) gene in families from North America, Europe and Japan. Hum Mutat 1996; 8:348–357.PubMedGoogle Scholar
  14. 14.
    Neumann H, Bender B. Genotype-phenotype correlations in von Hipple-Lindau disease. J Intern Med 1998; 243:541–545.PubMedGoogle Scholar
  15. 15.
    Knudson AGJ, Strong LC. Mutation and cancer: neuroblastoma and pheochromocytoma. Am J Hum Genet 1972; 24:514–532.PubMedGoogle Scholar
  16. 16.
    Knudson AGJ. Genetics of human cancer. Ann Rev Genet 1986; 20:231–251.PubMedGoogle Scholar
  17. 17.
    Kanno H, Kondo K, Ito S et al. Somatic mutations of the von Hippel-Lindau tumour suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res 1994; 54:4845–47.PubMedGoogle Scholar
  18. 18.
    Lee JY, Dong SM, Park WS et al. Loss of heterozygosity and somatic mutations of the VHL tumour suppressor gene in sporadic cerebellar hemangioblastomas. Cancer Res 1998; 58:504–08.PubMedGoogle Scholar
  19. 19.
    Oberstrass J, Reifenberger G, Reifenberger J et al. Mutation of the Von Hippel-Lindau tumour suppressor gene in capillary haemangioblastomas of the central nervous system. J Pathol 1996; 179:151–56.PubMedGoogle Scholar
  20. 20.
    Tse JY, Wong JH, Lo KW et al. Molecular genetic analysis of the von Hippel-Lindau disease tumour suppressor gene in familial and sporadic cerebellar hemangioblastomas. Am J Clin Pathol 1997; 107:459–66.PubMedGoogle Scholar
  21. 21.
    Gnarra JR, Tory K, Weng Y et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7:85–90.PubMedGoogle Scholar
  22. 22.
    Shuin T et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 1994; 54:2852–2855.PubMedGoogle Scholar
  23. 23.
    Foster K et al. Somatic mutations of the von Hippel-Lindau disease tumor suppressor gene in nonfamilial clear cell renal carcinoma. Hum Mol Genet 1994; 3:2169–2173.PubMedGoogle Scholar
  24. 24.
    Kondo K, Yao M, Yoshida M et al. Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer 2002; 34:58–68.PubMedGoogle Scholar
  25. 25.
    Herman JG et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91:9700–9704.PubMedGoogle Scholar
  26. 26.
    Her C, Wu X, Griswold MD et al. MutS Homologue MSH4 Physically Interacts with von Hippel-Lindau Tumor Suppressor-binding Protein 1. Cancer Research 2003; 63:865–872.PubMedGoogle Scholar
  27. 27.
    Tsuchiya H, Tokuhiro I, Hino O. Identification of a Novel Protein (VBP-1) Binding to the von Hippel-Lindau (VHL) Tumor Suppressor Gene Product. Cancer Research 1996; 56:2881–2885.PubMedGoogle Scholar
  28. 28.
    Brinke A, Green PM, Giannelli F. Characterization of the Gene (VBP1) and Transcript for the von Hippel-Lindau Binding Protein and Isolation of the Highly Conserved Murine Homologue. Genomics 1997; 45:105–112.PubMedGoogle Scholar
  29. 29.
    Geissler S, Siegers K, Schiebel E. A novel protein complex promoting formation of functionaland-tubulin.EMBO J 1998; 17:952–966.PubMedGoogle Scholar
  30. 30.
    Vainberg IE, Lewis SA, Rommelaere H et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 1998; 93:863–873.PubMedGoogle Scholar
  31. 31.
    Alvarez P, Smith A, Fleming J et al. Modulation of tubulin polypeptide ratios by the yeast protein Pac10p. Genetics 1998; 149:857–864.PubMedGoogle Scholar
  32. 32.
    Kneitz B, Cohen PE, Avdievich E et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 2000; 14:1085–1097.PubMedGoogle Scholar
  33. 33.
    Edelmann W, Cohen PE, Kneitz B et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 1999; 21:123–127.PubMedGoogle Scholar
  34. 34.
    De Vries SS, Baart EB, Dekker M et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 1999; 13:523–531.PubMedGoogle Scholar
  35. 35.
    Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271–275.PubMedGoogle Scholar
  36. 36.
    Tanimoto K, Makino Y, Pereira T et al. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 2000; 19:4298–4309.PubMedGoogle Scholar
  37. 37.
    Kamura T, Sato S, Iwai K et al. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 2000; 97:10430–10435.PubMedGoogle Scholar
  38. 38.
    Bardos JI, Ashcroft M. Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 2004; 26:262–269.PubMedGoogle Scholar
  39. 39.
    Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 2007; 17:71–77.PubMedGoogle Scholar
  40. 40.
    Hoffman MA, Ohh M, Yang H et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001; 10:1019–1027.PubMedGoogle Scholar
  41. 41.
    Knauth K, Bex C, Jemth P et al. Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1alpha interactions. Oncogene 2006; 25:370–377.PubMedGoogle Scholar
  42. 42.
    Pause A et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 1997; 94:2156–2161.PubMedGoogle Scholar
  43. 43.
    Pause A, Peterson B, Schaffar G et al. Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci USA 1999; 96:9533–9538.PubMedGoogle Scholar
  44. 44.
    Bai C et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86:263–274.PubMedGoogle Scholar
  45. 45.
    Deshaies R. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15:435–467.PubMedGoogle Scholar
  46. 46.
    Stebbins CE, Kaelin WG, Pavletich NP. Structure of the VHL — elongin-C — elongin-B complex: implications for VHL tumor suppressor function. Science 1999; 284:455–461.PubMedGoogle Scholar
  47. 47.
    Lisztwan J, Imbert G, Wirbelauer C et al. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin — protein ligase activity. Genes Dev 1999; 13:1822–1833.PubMedGoogle Scholar
  48. 48.
    Iwai K et al. Identification of the von Hippel-Lindau tumor suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 1999; 96:12436–12441.PubMedGoogle Scholar
  49. 49.
    Kamura T et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999; 284:657–661.PubMedGoogle Scholar
  50. 50.
    Los M et al. Expression pattern of the von Hippel-Lindau protein in human tissues. Lab Invest 1996; 75:231–238.PubMedGoogle Scholar
  51. 51.
    Lee S et al. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 1999; 19:1486–1497.PubMedGoogle Scholar
  52. 52.
    Schoenfeld A, Davidowitz E, Burk R. A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci USA 1998; 95:8817–8822.PubMedGoogle Scholar
  53. 53.
    Iliopoulos O, Ohh M, Kaelin W. pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci USA 1998; 95:11661–11666.PubMedGoogle Scholar
  54. 54.
    Blankenship C, Naglich J, Whaley J et al. Alternate choice of initiation codon produces a biologically active product of the von Hippel-Lindau gene with tumor suppressor activity. Oncogene 1999; 18:1529–1535.PubMedGoogle Scholar
  55. 55.
    Semenza G. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15:551–578.PubMedGoogle Scholar
  56. 56.
    Stadler W. Chromosomes, hypoxia, angiogenesis and trial design: a brief history of renal cancer drug development. Clin Cancer Res 2007; 13:1630–1633.PubMedGoogle Scholar
  57. 57.
    Wang GL, Semenza GL. General involvement of hypoxia inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90:4304–4308.PubMedGoogle Scholar
  58. 58.
    Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13:167–171.PubMedGoogle Scholar
  59. 59.
    Iliopoulos O, Levy AP, Jiang C et al. Negative regulation of hypoxia-inudcible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93:10595–105599.PubMedGoogle Scholar
  60. 60.
    Ivan M, Kondo K, Yang H et al. HIF-alpha targeted for VHL-mediated destruction by praline hydroxylation: Implications for O2 sensing. Science 2001; 292:464–468.PubMedGoogle Scholar
  61. 61.
    Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468–472.PubMedGoogle Scholar
  62. 62.
    Yu F, White SB, Zhao Q et al. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98:9630–9635.PubMedGoogle Scholar
  63. 63.
    Papandreou I, Cairns RA, Fontana L et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3:187–197.PubMedGoogle Scholar
  64. 64.
    Kim JW, Tchernyshyov I, Semenza GL et al. HIF-1 mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adpaptation to hypoxia. Cell Metab 2006; 3:177–185.PubMedGoogle Scholar
  65. 65.
    Levy AP, Levy NS, Iliopoulos O et al. Regulation of vascular endothelial growth factor by hypoxia and its modulation by the von Hippel-Lindau tumor suppressor gene. Kidney Int 1997; 51:575–578.PubMedGoogle Scholar
  66. 66.
    Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a taret of hypoxia-inducible factor-2 α in von Hippel-Lindau renal cell carcinioma. Oncogene 2005; 24:1043–1052.PubMedGoogle Scholar
  67. 67.
    Erler JT et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006; 440:1222–1226.PubMedGoogle Scholar
  68. 68.
    Staller P et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003; 425:307–311.PubMedGoogle Scholar
  69. 69.
    Zagzag D et al. Stromal cell-derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 2005; 65:6178–6188.PubMedGoogle Scholar
  70. 70.
    Knebelmann B, Ananth S, Cohen HT et al. Transforming growth factor alpha is a target for the von Hippel-Lindau tumor suppressor. Cancer Res 1998; 58:226–231.PubMedGoogle Scholar
  71. 71.
    Franovic A et al. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its expression in human cancer. Prox Natl Acad Sci USA 2007; 104:13092–13097.Google Scholar
  72. 72.
    Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2002; 2:673–682.PubMedGoogle Scholar
  73. 72.
    Sowter HM, Raval R, Moore J et al. Predominant Role of Hypoxia-Inducible Transcription Factor (HIF)-1 versus HIF-2 in Regulation of the Transcriptional Response to Hypoxia 1. Cancer Research 2003; 63:6130–6134.PubMedGoogle Scholar
  74. 73.
    Wiesener MS, Turley H, Allen WE et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1. Blood 1998; 92:2260–2268.PubMedGoogle Scholar
  75. 74.
    Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007; 12(2):108–13.PubMedGoogle Scholar
  76. 75.
    Hu CJ, Wang LY, Chodosh LA et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23:9361–9374.PubMedGoogle Scholar
  77. 76.
    Huang LE, Bindra RS, Glazer PM et al. Hypoxia-induced genetic instability — a calculated mechanism underlying tumor progression. J Mol Med 2007; 85:139–148.PubMedGoogle Scholar
  78. 77.
    Kim JW, Tchernyshyov I, Semenza GL et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3:177–185.PubMedGoogle Scholar
  79. 78.
    Lum JJ, Bui T, Gruber M et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21:1037–1049.PubMedGoogle Scholar
  80. 79.
    Papandreou I, Cairns RA, Fontana L et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3:187–197.PubMedGoogle Scholar
  81. 80.
    Ema M, Hirota K, Mimura J et al. Molecular mechanisms of transcription activation by HLF and HIF1 in response to hypoxia: their stabilisation and redox signal-induced interaction with CBP/p300. EMBO J 1999; 18:1905–1914.PubMedGoogle Scholar
  82. 81.
    Brusselmanns K, Bono F, Maxwell PH et al. Hypoxia-inducible factor-2 is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 2001; 276:39192–39196.Google Scholar
  83. 82.
    Ryan HE, Lo J, Johnson RS. HIF-1 is required for solid tumor formation and embryonic vascularization. EMBO J 1998; 17(11):3005–15.PubMedGoogle Scholar
  84. 83.
    Tian H, Hammer RE, Matsumoto AM et al. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 1998; 12(21):3320–4.PubMedGoogle Scholar
  85. 84.
    Smaldone MC, Maranchie JK. Clinical implications in hypoxia inducible factor in renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations 2009; 27:238–245.PubMedGoogle Scholar
  86. 85.
    Holmquist L, Jogi A, Pahlman S. Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 2005; 116(2):218–25.PubMedGoogle Scholar
  87. 86.
    Koshiji M, Kageyama Y, Pete EA et al. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 2004; 23:1949–1956.PubMedGoogle Scholar
  88. 87.
    Gordan JD, Bertout JA, Hu CJ et al. HIF-2alpha Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity. Cancer Cell 2007a; 11:335–347.PubMedGoogle Scholar
  89. 88.
    Mandriota SJ, Turner KJ, Davies DR et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002; 1:459–468.PubMedGoogle Scholar
  90. 89.
    Raval RR, Lau KW, Tran MG et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau associated renal cell carcinoma. Mol Cell Biol 2005; 25:5675–5686.PubMedGoogle Scholar
  91. 90.
    Wiesener MS, Jurgensen JS, Rosenberger C et al. Widespread hypoxia-inducible expression of HIF-2 in distinct cell populations of different organs. FASEB J 2003; 17(2):271–3.PubMedGoogle Scholar
  92. 91.
    Mandriota SJ, Turner KJ, Davies DR et al. HIF activation identifies early lesions in VHL kidneys. Evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002; 1(5):459–68.PubMedGoogle Scholar
  93. 92.
    Kim CM, Vocke C, Torres-Cabala C et al. Expression of hypoxia inducible factor-1 and 2 in genetically distinct early renal cortical tumors. J Urol 2006; 175(5):1908–14.PubMedGoogle Scholar
  94. 93.
    Kondo K, Klco J, Nakamura E et al. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1:237–246.PubMedGoogle Scholar
  95. 94.
    Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008; 319:1352–1355.PubMedGoogle Scholar
  96. 95.
    Hook SS, Lin JJ, Dutta A. Mechanisms to control rereplication and implications for cancer. Curr Opin Cell Biol 2007; 19:663–671.PubMedGoogle Scholar
  97. 96.
    Lee AC, Fenster BE, Ito H et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274:7936–7940.PubMedGoogle Scholar
  98. 97.
    Bartkova J, Horejsi Z, Koed K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434:864–87.PubMedGoogle Scholar
  99. 98.
    Gorgoulis VG, Vassiliou LV, Karakaidos P et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434:907–913.PubMedGoogle Scholar
  100. 99.
    Ray S, Atkuri KR, Deb-Basu D et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 2006; 66:6598–6605.PubMedGoogle Scholar
  101. 100.
    Vafa O, Wade M, Kern S et al. c-Myc can induce DNAvdamage, increase reactive oxygen species and mitigate p53 function: a mechanism for oncogeneinduced genetic instability. Mol Cell 2002; 9:1031–1044.PubMedGoogle Scholar
  102. 101.
    Koshiji M, To KK, Hammer S et al. HIF-1alpha induces genetic instability by transcriptionally down regulating MutSalpha expression. Mol Cell 2005; 17:793–803.PubMedGoogle Scholar
  103. 102.
    Gordan JD, Lal P, Dondeti VR et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. 2008; 14(6):435–46.Google Scholar
  104. 103.
    Maranchie JK et al. The contribution of VHL substrate binding and HIF1??to the phenotype of VHL Loss in renal cell carcinoma. Cancer Cell 2002; 1:247–255.PubMedGoogle Scholar
  105. 104.
    Gu YZ, Moran SM, Hogenesch JB et al. Molecular characterization and chromosomal localization of a third-class hypoxia inducible factor subunit, HIF3. Gene Expr 1998; 7(3):205–13.PubMedGoogle Scholar
  106. 105.
    Maynard MA, Qi H, Chung J et al. Multiple splice variants of the human HIF-3 locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 2003; 278(13):11032–40.PubMedGoogle Scholar
  107. 106.
    Maynard MA, Evans AJ, Hosomi T et al. Human HIF-3-4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 2005; 19(11):1396–406.PubMedGoogle Scholar
  108. 107.
    Esteban MA, Tran MG, Harten SK et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 2006; 66:3567–3575.PubMedGoogle Scholar
  109. 108.
    Evans AJ, Russell RC, Roche O et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 2007; 27:157–169.PubMedGoogle Scholar
  110. 109.
    Krishnamachary B, Zagzag D, Nagasawa H et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor null renal cell carcinoma mediated by TCF3, ZFHX1A and ZFHX1B. Cancer Res 2006; 66:2725–2731.PubMedGoogle Scholar
  111. 110.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin and cadherin pathways. Science 2004; 303:1483–1487.PubMedGoogle Scholar
  112. 111.
    Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16:51–59.PubMedGoogle Scholar
  113. 112.
    Nakaigawa N, Yao M, Baba M et al. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res 2006; 66:3699–3705.PubMedGoogle Scholar
  114. 113.
    Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 2006; 103:14531–14536.PubMedGoogle Scholar
  115. 114.
    Drees F, Pokutta S, Yamada S et al. α-Catenin is a molecular switch that binds E-cadherin — β-catenin and regulates actin-filament assembly. Cell 2005; 123:903–915.PubMedGoogle Scholar
  116. 115.
    Yamada S, Pokutta S, Drees F et al. Deconstructing the cadherin-catenin-actin Complex. Cell 2005; 123:889–901.PubMedGoogle Scholar
  117. 116.
    Behrens J, von Kries JP, Kuhl M et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996; 382:638–642.PubMedGoogle Scholar
  118. 117.
    Huber O, Korn R, McLaughlin J et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59:3–10.PubMedGoogle Scholar
  119. 118.
    Thoma CR, Frew IJ, Hoerner CR et al. pVHL and GSK3-beta are components of a primary cilium-maintenance signalling network. Nat Cell Biol 2007; 9:588–595.PubMedGoogle Scholar
  120. 119.
    Schermer B, Ghenoiu C, Bartram M et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 2006; 175:547–554.PubMedGoogle Scholar
  121. 120.
    Esteban MA, Harten SK, Tran MG et al. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 2006; 17:1801–1806.PubMedGoogle Scholar
  122. 121.
    Lutz MS, Burk RD. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res 2006; 66:6903–6907.PubMedGoogle Scholar
  123. 122.
    Ohh M, Yauch RL, Lonergan KM et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998; 1:959–968.PubMedGoogle Scholar
  124. 123.
    Tang N, Mack F, Haase VH et al. pVHL Function is essential for endothelial extracellular matrix deposition. Mol And Cell Biol 2006; 26(7):2519–2530.Google Scholar
  125. 124.
    Clifford SC, Cockman ME, Smallwood AC et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 2001; 10:1029–1038.PubMedGoogle Scholar
  126. 125.
    Hoffman MA, Ohh M, Yang H et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001; 10:1019–1027.PubMedGoogle Scholar
  127. 126.
    Stickle NH, Chung J, Klco JM et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol 2004; 24:3251–3261.PubMedGoogle Scholar
  128. 127.
    Kurban G, Hudon V, Duplan E et al. Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion and angiogenesis. Cancer Res 2006; 66:1313–1319.PubMedGoogle Scholar
  129. 128.
    Grosfeld A, Stolze IP, Cockman ME et al. Interaction of hydroxylated collagen IV with the von hippel-lindau tumor suppressor. J Biol Chem 2007; 282:13264–13269.PubMedGoogle Scholar
  130. 129.
    Kurban G, Duplan E, Ramlal N et al. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene 2008; 27:1004–1012.PubMedGoogle Scholar
  131. 130.
    Roe JS, Kim HS, Lee SM et al. p53 stabilization and transactivation by von Hippel-Lindau protein. Mol Cell 2006; 22:395–405.PubMedGoogle Scholar
  132. 131.
    Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003; 15:164–71.PubMedGoogle Scholar
  133. 132.
    Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299–303.PubMedGoogle Scholar
  134. 133.
    Sakaguchi K, Herrera JE, Saito S et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998; 12:2831–41.PubMedGoogle Scholar
  135. 134.
    Maher ER, Yates JR, Harries R et al. Clinical features and natural history of von Hippel-Lindau disease. Q J Med 1990; 77(283):1151–1163.PubMedGoogle Scholar
  136. 135.
    Couch V, Lindor MS, Noralane M et al. von Hippel-Lindau disease. Mayo Clin Proc 2000; 75:265–272.PubMedGoogle Scholar
  137. 136.
    Kaelin WG. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res 2007; 13:680s–684s.Google Scholar
  138. 137.
    Weirich G, Klein B, Wohl T et al. VHL2C phenotype in a German von Hippel-Lindau family with concurrent VHL germline mutations P81S and L188V. J Clin Endoc Metab 2002; 87:5241–5246.Google Scholar
  139. 138.
    Hes F, Zewald R, Peeters T et al. Genotype-phenotype correlations in families with deletions in the von Hippel-Lindau (VHL) gene. Hum Genet 2000; 106:425–31.PubMedGoogle Scholar
  140. 139.
    Lamiell JM, Salazar FG, Hsia YE. Von Hippl-Lindau disease affecting 43 members of a single kindred. Medicine 1989; 68:1–29.PubMedGoogle Scholar
  141. 140.
    Lonser RR, Glenn GM, Walther M et al. Von Hippel Lindau disease. Lancet 2003; 361:2059–2067.PubMedGoogle Scholar
  142. 141.
    Wanebo JE, Lonser RR, Glenn GM et al. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 2003; 98:82–94.PubMedGoogle Scholar
  143. 142.
    Neumann HP, Eggert HR, Scheremet R et al. Central nervous system lesions in von Hippel-Lindau syndrome. J Neurol Neurosurg Psychiatry 1992; 55:898–901.PubMedGoogle Scholar
  144. 143.
    Filling-Katz MR, Choyke PL, Oldfield E et al. Central nervous system involvement in Von Hippel-Lindau disease. Neurology 1991; 41:41–46.PubMedGoogle Scholar
  145. 144.
    Choyke PL, Glenn GM, Walther MM et al. Von Hippel-Lindau disease: Genetic, clinical and imaging features. Radiology 1995; 194:629–642.PubMedGoogle Scholar
  146. 145.
    Torreggiani WC, Keogh C et al. Von Hippel-Lindau disease: A radiological essay. Clin Radiol 2002; 57:670–680.PubMedGoogle Scholar
  147. 146.
    Pavesi G, Feletti A, Berlucchi S et al. Neurosurgical treatment of von Hippel-Lindau-associated hemangioblastomas: benefits, risks and outcome. J Neurosurg Sci 2008; 52:29–36.PubMedGoogle Scholar
  148. 147.
    Lonser RR, Weil RJ, Wanebo JE et al. Surgical management of spinal cord hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 2003; 98:106–116.PubMedGoogle Scholar
  149. 148.
    Weil RJ, Lonser RR, DeVroom HL et al. Surgical management of brainstem hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 2003; 98:95–105.PubMedGoogle Scholar
  150. 149.
    Niemela M, Lim YJ, Soderman M et al. Gamma knife radiosurgery in 11 hemangioblastomas. J Neurosurg 1996; 85:591–96.PubMedGoogle Scholar
  151. 150.
    Page KA, Wayson K, Steinberg GK et al. Stereotaxic radiosurgical ablation: an alternative treatment for recurrent and multifocal hemangioblastomas: a report of four cases. Surg Neurol 1993; 40:424–28.PubMedGoogle Scholar
  152. 151.
    Patrice SJ, Sneed PK, Flickinger JC et al. Radiosurgery for hemangioblastoma: results of a multi-institutional experience. Int J Radiat Oncol Biol Phys 1996; 35:493–99.PubMedGoogle Scholar
  153. 152.
    Chang SD, Meisel JA, Hancock SL et al. Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery 1998; 43:28–34.PubMedGoogle Scholar
  154. 153.
    Dollfus H, Massin P, Taupin P et al. Retinal hemangioblastoma in von Hippel-Lindau disease: a clinical and molecular study. Invest Ophthalmol Vis Sci 2002; 43:3067–74.PubMedGoogle Scholar
  155. 154.
    Webster AR, Maher ER, Moore AT. Clinical characteristics of ocular angiomatosis in von Hippel-Lindau disease and correlation with germline mutation. Arch Ophthalmol 1999; 117:371–78.PubMedGoogle Scholar
  156. 155.
    Oosterhuis JA, Rubinstein K. Hemangioma at the optic disc. Ophthalmologica 1972; 164:362–374.PubMedGoogle Scholar
  157. 156.
    Singh AD, Nouri M, Shields CL et al. Treatment of retinal capillary hemangioma. Ophthalmology 2002; 109:1799–1806.PubMedGoogle Scholar
  158. 157.
    Manski TJ, Heffner DK, Glenn GM et al. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau Disease. JAMA 1997; 277:1461–1466.PubMedGoogle Scholar
  159. 158.
    Luff DA, Simmons M, Malik T et al. Pathology in Focus. Endolymphatic sac tumours. J of Laryngology and Otology 2002; 116:398–401.Google Scholar
  160. 159.
    Meister M, Choyke P, Anderson C et al. Radiological evaluation, management and surveillance of renal masses in von Hippel-Lindau disease. Clinical Radiology 2009; 64:589–600.PubMedGoogle Scholar
  161. 160.
    Solomon D, Schwartz A. Renal pathology in von Hippel-Lindau disease. Hum Pathol 1988; 19:1072–1079.PubMedGoogle Scholar
  162. 161.
    Lamiell JM, Salazar FG, Hsia YE. von Hippel-Lindau disease affecting 43 members of a single kindred 1989; 68(1):1–29.Google Scholar
  163. 162.
    Neumann HP, Bender BU, Berger DP et al. Prevalence, morphology and biology of renal cell carcinoma in von Hippel-Lindau disease compared to sporadic renal cell carcinoma. J Urol 1995; 54:2010–2014.Google Scholar
  164. 163.
    Walther MM, Choyke PL, Glenn G et al. Renal cancer in families with hereditary renal cancer: Prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 2001; 161:1475–1479.Google Scholar
  165. 164.
    Poston CD, Jaffe GS, Lubensky IA et al. Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications. J Urol 1995; 153:22–26.PubMedGoogle Scholar
  166. 165.
    Pavlovich CP, Walther MM, Choyke PL et al. Percutaneous radio frequency ablation of small renal tumours: initial results. J Urol 2002; 167:10–15.PubMedGoogle Scholar
  167. 166.
    Shingleton WB, Sewell PE Jr. Percutaneous renal tumour cryoablation with magnetic resonance imaging guidance. J Urol 2001; 165:773–776.PubMedGoogle Scholar
  168. 167.
    Gill IS, Novick AC, Meraney AM et al. Laparoscopic renal cryoablation in 32 patients. Urology 2000; 56:748–753.PubMedGoogle Scholar
  169. 168.
    Gill IS, Remer EM, Hasan WA et al. Renal cryoablation: outcome at 3 years. J Urol 2005; 173:1903–1907.PubMedGoogle Scholar
  170. 169.
    Hafron J, Kaouk JH. Ablative techniques for the management of kidney cancer. Nat Clin Pract 2007; 4:261–269.Google Scholar
  171. 170.
    Chauveau D, Duvic C, Chretien Y et al. Renal involvement in von Hippel-Lindau disease. Kidney Int 1996; 50:944–951.PubMedGoogle Scholar
  172. 171.
    Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335–2342.PubMedGoogle Scholar
  173. 172.
    Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for nonsmall-cell lung cancer. N Engl J Med 2006; 355:2542–2550.PubMedGoogle Scholar
  174. 173.
    Miller K, Wang M, Gralow J et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Eng J Med 2007; 357:2666–2676.Google Scholar
  175. 174.
    Kim JJ, Rini BI. Recent advances in molecularly targeted therapy in advanced renal cell carcinoma. Therapy 2009; 6(3):309–320.Google Scholar
  176. 175.
    Aiello LP, George DJ, Cahill MT et al. Rapid durable recovery of visual function in a patient with von Hippel-Lindau syndrome after systemic therapy with vascular endothelial growth factor receptor inhibitor SU5416. Amer Acad Opth 2002; 109(9):1745–1751.Google Scholar
  177. 176.
    Walther MM, Reiter R, Keiser HR et al. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol 1999; 162:659–664.PubMedGoogle Scholar
  178. 177.
    Weise M, Merke DP, Pacak K et al. Utility of plasma free metanephrines for detecting childhood pheochromocytoma. J Clin Endocrinol Metab 2002; 87:1955–60.PubMedGoogle Scholar
  179. 178.
    Neumann HP, Berger DP, Sigmund G. Pheochromocytomas, multiple endocrine neoplasia Type 2 and von Hippel Lindau disease. N Engl J Med 329:1531–1538.Google Scholar
  180. 179.
    Eisenhofer G, Lenders JW, Linehan WM et al. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med 1999; 340:1872–79.PubMedGoogle Scholar
  181. 180.
    Mugawar M, Rajender Y, Purohit AK et al. Anesthetic management of von Hippel-Lindau syndrome for excision of cerebellar hemangioblastoma and pheochromocytoma surgery. Anesth Analg 1998; 86:673–674.PubMedGoogle Scholar
  182. 181.
    Harrington JL, Farley DR, van Heerden JA et al. Adrenal tumors and pregnancy. World J Surg 1999; 23:182–186.PubMedGoogle Scholar
  183. 182.
    Lairmore TC, Ball DW, Baylin SB et al. Management of pheochromocytomas in patients with multiple endocrine neoplasia type 2 syndromes. Ann Surg 1993; 217:595–601.PubMedGoogle Scholar
  184. 183.
    Pavlovich CP, Linehan WM, Walther MM. Partial adrenalectomy in patients with multiple adrenal tumours. Curr Urol Rep 2001; 2:19–23.PubMedGoogle Scholar
  185. 184.
    Baghai M, Thompson GB, Young WF Jr et al. Pheochromocytomas and paragangliomas in von Hippel-Lindau disease: a role for laparoscopic and cortical-sparing surgery. Arch Surg 2002; 137:682–88.PubMedGoogle Scholar
  186. 185.
    Hammel PR, Vilgrain V, Terris B et al. Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology 2000; 119:1087–1095.PubMedGoogle Scholar
  187. 186.
    Binkovitz LA, Johnson CD, Stephens DH. Islet cell tumors in von Hippel-Lindau disease: increased prevalence and relationship to the multiple endocrine neoplasias. AJR Am J Roentgenol 1990; 155:501–505.PubMedGoogle Scholar
  188. 187.
    Libutti SK, Choyke PL, Bartlett DL et al. Pancreatic neuroendocrine tumors associated with von Hippel Lindau disease: Diagnostic and management recommendations. Surgery 1998; 124:1153–1159.PubMedGoogle Scholar
  189. 188.
    Gruber MB, Healey GB, Toguri AG et al. Papillary cystadenoma of epididymis: component of von Hippel-Lindau syndrome. Urology 1980; 16:305–306.PubMedGoogle Scholar
  190. 189.
    Choyke PL, Glenn GM, Wagner JP et al. Epididymal cystadenomas in von Hippel-Lindau disease. Urology 1997; 49:926–31.PubMedGoogle Scholar
  191. 190.
    Funk KC, Heiken JP. Papillary cystadenoma of the broad ligament in a patient with von Hippel-Lindau disease. AJR Am J Roentgenol 1989; 153:527–558.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Jenny J. Kim
    • 1
  • Brian I. Rini
    • 2
  • Donna E. Hansel
    • 3
  1. 1.Cleveland ClinicTaussig Cancer InstituteClevelandUSA
  2. 2.Cleveland Clinic Department of Solid Tumor Oncology Taussig Cancer InstituteGlickman Urological and Kidney InstituteClevelandUSA
  3. 3.Cleveland Clinic Department of Anatomic Pathology Taussig Cancer Institute and Genomic Medicine InstituteGlickman Urological and Kidney InstituteClevelandUSA

Personalised recommendations