Skip to main content

Primary Immunodeficiency Syndromes

  • Chapter
Diseases of DNA Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

Several DNA repair pathways have evolved to recognise and repair DNA damaged by exogenous and endogenous agents, in order to maintain genomic integrity. Defects in these pathways can lead to replication errors, loss or rearrangement of genomic material, mutation or cancer and eventual death. The creation of many diverse lymphocyte receptors to identify potential pathogens has evolved by breaking and randomly resorting the gene segments coding for antigen receptors. Subsequent steps utilise the ubiquitous repair proteins. Individuals with defective repair pathways are increasingly recognised with immunodeficiency, many of whom exhibit radiosensitivity. Our understanding of the role of repair proteins in the development of adaptive immunity by VDJ recombination, antibody isotype class switching and affinity maturation by somatic hyper-mutation has made significant progress over the last few years, partly by the identification of new genes involved in human disease. We describe the mechanisms involved in the development of adaptive immunity relating to DNA repair and describe the clinical consequences and treatment developments of primary immunodeficiency resulting from such d

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lieber MR, Ma Y, Pannicke U et al. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 2004; 3:817–826.

    Article  CAS  Google Scholar 

  2. Riballo E, Kuhne M, Rief N et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis and proteins locating to gamma-H2AX foci. Mol Cell 2004; 16:715–724.

    Article  CAS  PubMed  Google Scholar 

  3. Bredemeyer AL, Sharma GG, Huang CY et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 2006; 442:466–470.

    Article  CAS  PubMed  Google Scholar 

  4. Huang CY, Sharma GG, Walker LM et al. Defects in coding joint formation in vivo in developing ATM-deficient B-and T-lymphocytes. J Exp Med 2007; 204:1371–1381.

    Article  CAS  PubMed  Google Scholar 

  5. Helmink BA, Bredemeyer AL, Lee BS et al. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J Exp Med 2009; 206:669–679.

    Article  CAS  PubMed  Google Scholar 

  6. Perkins EJ, Nair A, Cowley DO et al. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 2002; 16:159–164.

    Article  CAS  PubMed  Google Scholar 

  7. Chen HT, Bhandoola A, Difilippantonio MJ et al. Response to RAG-mediated VDJ cleavage by NBS1 and ?-H2AX. Science 2000; 290:1962–1965.

    Article  CAS  PubMed  Google Scholar 

  8. Celeste A, Fernandez-Capetillo O, Kruhlak MJ et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003; 5:675–679.

    Article  CAS  PubMed  Google Scholar 

  9. Stracker TH, Theunissen JW, Morales M et al. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 2004; 3:845–854.

    Article  CAS  Google Scholar 

  10. Difilippantonio S, Celeste A, Fernandez-Capetillo O et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 2005; 7:675–685.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi Y, Tycko B, Soreng AL et al. Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol 1991; 147:3201–3209.

    CAS  PubMed  Google Scholar 

  12. Corneo B, Wendland RL, Deriano L et al. Rag mutations reveal robust alternative end joining. Nature 2007; 449:483–486.

    Article  CAS  PubMed  Google Scholar 

  13. Iwasato T, Shimizu A, Honjo T et al. Circular DNA is excised by immunoglobulin class switch recombination. Cell 1990; 62:143–149.

    Article  CAS  PubMed  Google Scholar 

  14. Muramatsu M, Kinoshita K, Fagarasan S et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102:553–563.

    Article  CAS  PubMed  Google Scholar 

  15. Revy P, Muto T, Levy Y et al. Activation-Induced cytidine Deaminase (AID) deficiency causes the autosomal recessive form of Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565–575.

    Article  CAS  PubMed  Google Scholar 

  16. Bransteitter R, Pham P, Scharff MD et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 2003; 100:4102–4107.

    Article  CAS  PubMed  Google Scholar 

  17. Rada C, Williams GT, Nilsen H et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 2002; 12:1748–1755.

    Article  CAS  PubMed  Google Scholar 

  18. Guikema JE, Linehan EK, Tsuchimoto D et al. APE1-and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 2007; 204:3017–3026.

    Article  CAS  PubMed  Google Scholar 

  19. Xue K, Rada C, Neuberger MS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/-mice. J Exp Med 2006; 203:2085–2094.

    Article  CAS  PubMed  Google Scholar 

  20. Wilson TM, Vaisman A, Martomo SA et al. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med 2005; 201:637–645.

    Article  CAS  PubMed  Google Scholar 

  21. Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316:1160–1166.

    Article  CAS  PubMed  Google Scholar 

  22. Schrader CE, Vardo J, Stavnezer J. Role for mismatch repair proteins Msh2, Mlh1 and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J Exp Med 2002; 195:367–373.

    Article  CAS  PubMed  Google Scholar 

  23. Péron S, Metin A, Gardès P et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med 2008; 205:2465–2472.

    Article  PubMed  CAS  Google Scholar 

  24. Babbe H, Chester N, Leder P et al. The Bloom’s syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Mol Cell Biol 2007; 27:1947–1959.

    Article  CAS  PubMed  Google Scholar 

  25. Pedrazzi G, Bachrati CZ, Selak N et al. The Bloom’s syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol Chem 2003; 384:1155–1164.

    Article  CAS  PubMed  Google Scholar 

  26. Pedrazzi G, Perrera C, Blaser H et al. Direct association of Bloom’s syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res 2001; 29:4378–4386.

    Article  CAS  PubMed  Google Scholar 

  27. Schrader CE, Guikema JE, Linehan EK et al. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J Immunol 2007; 179:6064–6071.

    CAS  PubMed  Google Scholar 

  28. Yan CT, Boboila C, Souza EK et al. IgH class switching and translocations use a robust nonclassical end-joining pathway. Nature 2007; 449:478–482.

    Article  CAS  PubMed  Google Scholar 

  29. Berkovich E, Monnat RJ Jr, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007; 9:683–690.

    Article  CAS  PubMed  Google Scholar 

  30. Burma S, Chen BP, Murphy M et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276:42462–42467.

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi J, Tauchi H, Chen B et al. Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1. Biochem Biophys Res Commun 2009; 380:752–757.

    Article  CAS  PubMed  Google Scholar 

  32. Ward IM, Reina-San-Martin B, Olaru A et al. 53BP1 is required for class switch recombination. J Cell Biol 2004; 165:459–464.

    Article  CAS  PubMed  Google Scholar 

  33. Rooney S, Alt FW, Sekiguchi J et al. Artemis-independent functions of DNA-dependent protein kinase in Ig heavy chain class switch recombination and development. Proc Natl Acad Sci USA 2005; 102:2471–2475.

    Article  CAS  PubMed  Google Scholar 

  34. Franco S, Murphy MM, Li G et al. DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination. J Exp Med 2008; 205:557–564.

    Article  CAS  PubMed  Google Scholar 

  35. Du L, van der Burg M, Popov SW et al. Involvement of Artemis in nonhomologous end-joining during immunoglobulin class switch recombination. J Exp Med 2008; 205:3031–3040.

    Article  CAS  PubMed  Google Scholar 

  36. Pan-Hammarstrom Q, Jones AM, Lahdesmaki A et al. Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. J Exp Med 2005; 201:189–194.

    Article  PubMed  Google Scholar 

  37. Helleday T, Bryant HE, Schultz N. Poly (ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle 2005; 4:1176–1178.

    Article  CAS  PubMed  Google Scholar 

  38. Audebert M, Salles B, Calsou P. Involvement of poly (ADP-ribose) polymerase-1 and XRCC1/ DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 2004; 279:55117–55126.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Rosidi B, Perrault R et al. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 2005; 65:4020–30.

    Article  CAS  PubMed  Google Scholar 

  40. Robert I, Dantzer F, Reina-San-Martin B. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 2009; 206:1047–1056.

    Article  CAS  PubMed  Google Scholar 

  41. Liang L, Deng L, Nguyen SC et al. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 2008; 36:3297–3310.

    Article  CAS  PubMed  Google Scholar 

  42. Sekine H, Ferreira RC, Pan-Hammarström Q et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci USA 2007; 104:7193–7198.

    Article  CAS  PubMed  Google Scholar 

  43. Kaartinen M, Griffiths GM, Markham AF et al. mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. Nature 1983; 304:320–324.

    Article  CAS  PubMed  Google Scholar 

  44. Storb U. Progress in understanding the mechanism and consequences of somatic hypermutation. Immunol Rev 1998; 162:5–11.

    Article  CAS  PubMed  Google Scholar 

  45. Shivarov V, Shinkura R, Doi T et al. Molecular mechanism for generation of antibody memory. Philos Trans R Soc Lond B Biol Sci 2009; 364:569–575.

    Article  CAS  PubMed  Google Scholar 

  46. Schanz S, Castor D, Fischer F et al. Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation. Proc Natl Acad Sci USA 2009; 106:5593–5598.

    Article  CAS  PubMed  Google Scholar 

  47. Larson ED, Cummings WJ, Bednarski DW et al. MRE11/RAD50 cleaves DNA in the AID/ UNG-dependent pathway of immunoglobulin gene diversification. Mol Cell 2005; 20:367–375.

    Article  CAS  PubMed  Google Scholar 

  48. Sack SZ, Liu Y, German J et al. Somatic hypermutation of immunoglobulin genes is independent of the Bloom’s syndrome DNA helicase. Clin Exp Immunol 1998; 112:248–254.

    Article  CAS  PubMed  Google Scholar 

  49. Schwarz K, Glaus GH, Ludwig L et al. RAG mutations in human B-cell-negative SCID. Science 1996; 274:97–99.

    Article  CAS  PubMed  Google Scholar 

  50. Villa A, Santagata S, Bozzi F et al. Partial V(D)J recombination activity leads to Omenn syndrome. Cell 1998; 93:885–896.

    Article  CAS  PubMed  Google Scholar 

  51. Omenn GS. Familial reticuloendotheliosis with eosinophilia. N Engl J Med 1965; 273:427–432.

    Article  CAS  PubMed  Google Scholar 

  52. Rieux-Laucat F, Bahadoran P, Brousse N et al. Highly restricted human T-cell repertoire beta (TCRB) chain diversity in peripheral blood and tissue-infiltrating lymphocytes in Omenn’s syndrom (severe combined immunodeficiency with hypereosinophilia). J Clin Invest 1998; 102:312–321.

    Article  CAS  PubMed  Google Scholar 

  53. Ehl S, Schwarz K, Enders A et al. A variant of SCID with specific immune responses and predominance of gamma delta T-cells. J Clin Invest 2005; 115:3140–3148.

    Article  CAS  PubMed  Google Scholar 

  54. de Villartay JP, Lim A, Al-Mousa H et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Invest 2005; 115:3291–3299.

    Article  PubMed  CAS  Google Scholar 

  55. Schuetz C, Huck K, Gudowius S et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358:2030–2038.

    Article  CAS  PubMed  Google Scholar 

  56. Moshous D, Callebaut I, de Chasseval R et al. Artemis, a novel DNA double-strand break repair/ V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105:177–186.

    Article  CAS  PubMed  Google Scholar 

  57. Jones JF, Ritenbaugh CK, Spence MA et al. Severe combined immunodeficiency among the Navajo. I. Characterization of phenotypes, epidemiology and population genetics. Hum Biol 1991; 63:669–682.

    CAS  PubMed  Google Scholar 

  58. Cavazzana-Calvo M, Le Deist F, de Saint Basile G et al. Increased radiosensitivity of granulocyte macrophage colony-forming units and skin fibroblasts in human autosomal recessive severe combined immunodeficiency. J Clin Invest 1993; 91:1214–1218.

    Article  CAS  PubMed  Google Scholar 

  59. Ege M, Ma Y, Manfras B et al. Omenn syndrome due to ARTEMIS mutations. Blood 2005; 105:4179–4186.

    Article  CAS  PubMed  Google Scholar 

  60. Moshous D, Pannetier C, de Chasseval R et al. Partial T-and B-lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J Clin Invest 2003; 111:381–387.

    CAS  PubMed  Google Scholar 

  61. Evans PM, Woodbine L, Riballo E et al. Radiation-induced delayed cell death in a hypomorphic Artemis cell line. Hum Mol Genet 2006; 15:1303–1311.

    Article  CAS  PubMed  Google Scholar 

  62. van der Burg M, Ijspeert H, Verkaik NS et al. A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest 2009; 119:91–98.

    PubMed  Google Scholar 

  63. Riballo E, Critchlow SE, Teo SH et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 1999; 9:699–702.

    Article  CAS  PubMed  Google Scholar 

  64. O’Driscoll M, Cerosaletti KM, Girard PM et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001; 8:1175–1185.

    Article  PubMed  Google Scholar 

  65. Unal S, Cerosaletti K, Uckan-Cetinkaya D et al. A novel mutation in a family with DNA ligase IV deficiency syndrome. Pediatr Blood Cancer 2009; 53:482–484.

    Article  PubMed  Google Scholar 

  66. van der Burg M, van Veelen LR, Verkaik NS et al. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest 2006; 116:137–145.

    Article  PubMed  CAS  Google Scholar 

  67. Buck D, Moshous D, de Chasseval R et al. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol 2006; 36:224–235.

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Omran TI, Cerosaletti K, Concannon P et al. A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A 2005; 137:283–287.

    Google Scholar 

  69. Enders A, Fisch P, Schwarz K et al. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol 2006; 176:5060–5068.

    CAS  PubMed  Google Scholar 

  70. Toita N, Hatano N, Ono S et al. Epstein-Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. Am J Med Genet A 2007; 143:742–745.

    PubMed  Google Scholar 

  71. Grunebaum E, Bates A, Roifman CM. Omenn syndrome is associated with mutations in DNA ligase IV. J Allergy Clin Immunol 2008; 122:1219–1220.

    Article  CAS  PubMed  Google Scholar 

  72. Buck D, Malivert L, de Chasseval R et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 2006; 124:287–299.

    Article  CAS  PubMed  Google Scholar 

  73. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006; 124:301–313.

    Article  CAS  PubMed  Google Scholar 

  74. Dai Y, Kysela B, Hanakahi LA et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci USA 2003; 100:2462–2467.

    Article  CAS  PubMed  Google Scholar 

  75. Faraci M, Lanino E, Micalizzi C et al. Unrelated hematopoietic stem cell transplantation for Cernunnos-XLF deficiency. Pediatr Transplant 2008. [Epub ahead of print].

    Google Scholar 

  76. Schwartz M, Oren YS, Bester AC et al. Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations. PLoS One 2009; 4:e4516.

    Article  PubMed  CAS  Google Scholar 

  77. Ahmad SI, ed. Molecular mechanisms of ataxia telangiectasis. medical intelligence unit, Landes Bioscience Publication, Texas, 2009.

    Google Scholar 

  78. Noordzij JG, Wulffraat NM, Haraldsson A et al. Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child 2009; 94:448–449.

    Article  CAS  PubMed  Google Scholar 

  79. Lefton-Greif MA, Crawford TO, Winkelstein JA et al. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr 2000; 136:225–231.

    Article  CAS  PubMed  Google Scholar 

  80. Staples ER, McDermott EM, Reiman A et al. Immunodeficiency in ataxia telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia mutated gene. Clin Exp Immunol 2008; 153:214–220.

    Article  CAS  PubMed  Google Scholar 

  81. Sanal O, Ersoy F, Yel L et al. Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. J Clin Immunol 1999; 19:326–334.

    Article  CAS  PubMed  Google Scholar 

  82. Tangsinmankong N, Wayne AS, Howenstine M et al. Lymphocytic interstitial pneumonitis, elevated IgM concentration and hepatosplenomegaly in ataxia-telangiectasia. J Pediatr 2001; 138:939–941.

    Article  CAS  PubMed  Google Scholar 

  83. Srisirirojanakorn N, Finegold MJ, Gopalakrishna GS et al. Hepatic veno-occlusive disease in ataxia-telangiectasia. J Pediatr 1999; 134:786–788.

    Article  CAS  PubMed  Google Scholar 

  84. Crawford TO, Skolasky RL, Fernandez R et al. Survival probability in ataxia telangiectasia. Arch Dis Child 2006; 91:610–611.

    Article  CAS  PubMed  Google Scholar 

  85. Giovannetti A, Mazzetta F, Caprini E et al. Skewed T-cell receptor repertoire, decreased thymic output and predominance of terminally differentiated T-cells in ataxia telangiectasia. Blood 2002; 100:4082–4089.

    Article  CAS  PubMed  Google Scholar 

  86. Reina-San-Martin B, Chen HT, Nussenzweig A et al. ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 2004; 200:1103–1110.

    Article  CAS  PubMed  Google Scholar 

  87. Weemaes CM, Hustinx TW, Scheres JM et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand 1981; 70:557–564.

    Article  CAS  PubMed  Google Scholar 

  88. Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 2004; 3:1207–1217.

    Article  CAS  Google Scholar 

  89. Gregorek H, Chrzanowska KH, Michalkiewicz J et al. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin Exp Immunol 2002; 130:319–324.

    Article  CAS  PubMed  Google Scholar 

  90. Xu Y. ATM in lymphoid development and tumorigenesis. Adv Immunol 1999; 72:179–189.

    Article  CAS  PubMed  Google Scholar 

  91. Kracker S, Bergmann Y, Demuth I et al. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci USA 2005; 102:1584–1589.

    Article  CAS  PubMed  Google Scholar 

  92. Reina-San-Martin B, Nussenzweig MC, Nussenzweig A et al. Genomic instability, endoreduplication and diminished Ig class-switch recombination in B-cells lacking Nbs1. Proc Natl Acad Sci USA 2005; 102:1590–1595.

    Article  CAS  PubMed  Google Scholar 

  93. Wolf EK, Shwayder TA. Nijmegen breakage syndrome associated with porokeratosis. Pediatr Dermatol 2009; 26:106–8.

    Article  PubMed  Google Scholar 

  94. Yoo J, Wolgamot G, Torgerson TR et al. Cutaneous noncaseating granulomas associated with Nijmegen breakage syndrome. Arch Dermatol 2008; 144:418–419.

    Article  PubMed  Google Scholar 

  95. Green AM, Kupfer GM. Fanconi anemia. Hematol Oncol Clin North Am 2009; 23:193–214.

    Article  PubMed  Google Scholar 

  96. Ahmad SI, Kirk SH, eds. Molecular Mechanisms of Fanconi anemia. Austin: Landes Bioscience, 2006.

    Google Scholar 

  97. Gennery AR, Slatter MA, Bhattacharya A et al. The clinical and biological overlap between Nijmegen Breakage Syndrome and Fanconi anemia. Clin Immunol 2004; 113:214–219.

    Article  CAS  PubMed  Google Scholar 

  98. Stewart GS, Maser RS, Stankovic T et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999; 99:577–587.

    Article  CAS  PubMed  Google Scholar 

  99. Delia D, Piane M, Buscemi G et al. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Hum Mol Genet 2004; 13:2155–2163.

    Article  CAS  PubMed  Google Scholar 

  100. Fernet M, Gribaa M, Salih MA et al. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 2005; 14:307–318.

    Article  CAS  PubMed  Google Scholar 

  101. Khan AO, Oystreck DT, Koenig M et al. Ophthalmic features of ataxia telangiectasia-like disorder. J AAPOS 2008; 12:186–189.

    Article  PubMed  Google Scholar 

  102. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 2004; 3:1219–1225.

    Article  CAS  Google Scholar 

  103. Lahdesmaki A, Taylor AM, Chrzanowska KH et al. Delineation of the role of the Mre11 complex in class switch recombination. J Biol Chem 2004; 279:16479–16487.

    Article  PubMed  CAS  Google Scholar 

  104. Waltes R, Kalb R, Gatei M et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 2009; 84:605–616.

    Article  CAS  PubMed  Google Scholar 

  105. Barbi G, Scheres JM, Schindler D et al. Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am J Med Genet 1991; 40:44–45.

    Article  CAS  PubMed  Google Scholar 

  106. Donahue SL, Tabah AA, Schmitz K et al. Defective signal joint recombination in fanconi anemia fibroblasts reveals a role for Rad50 in V(D)J recombination. J Mol Biol 2007; 370:449–458.

    Article  CAS  PubMed  Google Scholar 

  107. Stewart GS, Stankovic T, Byrd PJ et al. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc Natl Acad Sci USA 2007; 104:16910–16915.

    Article  CAS  PubMed  Google Scholar 

  108. Stewart GS, Panier S, Townsend K et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009; 136:420–434.

    Article  CAS  PubMed  Google Scholar 

  109. Difilippantonio S, Gapud E, Wong N et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 2008; 456:529–533.

    Article  CAS  PubMed  Google Scholar 

  110. Manis JP, Morales JC, Xia Z et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 2004; 5:481–487.

    Article  CAS  PubMed  Google Scholar 

  111. Ward IM, Reina-San-Martin B, Olaru A et al. 53BP1 is required for class switch recombination. J Cell Biol 2004; 165:459–464.

    Article  CAS  PubMed  Google Scholar 

  112. Berardinelli F, di Masi A, Salvatore M et al. A case report of a patient with microcephaly, facial dysmorphism, chromosomal radiosensitivity and telomere length alterations closely resembling “Nijmegen breakage syndrome” phenotype. Eur J Med Genet 2007; 50:176–187.

    Article  CAS  PubMed  Google Scholar 

  113. Maraschio P, Spadoni E, Tanzarella C et al. Genetic heterogeneity for a Nijmegen breakage-like syndrome. Clin Genet 2003; 63:283–290.

    Article  CAS  PubMed  Google Scholar 

  114. Hiel JA, Weemaes CM, van Engelen BG et al. Nijmegen breakage syndrome in a Dutch patient not resulting from a defect in NBS1. J Med Genet 2001; 38:E19.

    Article  CAS  PubMed  Google Scholar 

  115. Revy P, Muto T, Levy Y et al. Activation-Induced cytidine Deaminase (AID) deficiency causes the autosomal recessive form of Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565–575.

    Article  CAS  PubMed  Google Scholar 

  116. Quartier P, Bustamante J, Sanal O et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol 2004; 110:22–29.

    Article  CAS  PubMed  Google Scholar 

  117. Minegishi Y, Lavoie A, Cunningham-Rundles C et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 2000; 97:203–210.

    Article  CAS  PubMed  Google Scholar 

  118. Hase K, Takahashi D, Ebisawa M et al. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS One 2008; 3:e3033.

    Article  PubMed  CAS  Google Scholar 

  119. Ta VT, Nagaoka H, Catalan N et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 2003; 4:843–848.

    Article  CAS  PubMed  Google Scholar 

  120. Imai K, Zhu Y, Revy P et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 2005; 115:277–285.

    Article  CAS  PubMed  Google Scholar 

  121. Imai K, Slupphaug G, Lee WI et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 2003; 4:1023–1028.

    Article  CAS  PubMed  Google Scholar 

  122. De Vos M, Hayward BE, Charlton R et al. PMS2 mutations in childhood cancer. J Natl Cancer Inst 2006; 98:358–361.

    Article  PubMed  CAS  Google Scholar 

  123. Kratz CP, Niemeyer CM, Jüttner E et al. Childhood T-cell non-Hodgkin’s lymphoma, colorectal carcinoma and brain tumor in association with café-au-lait spots caused by a novel homozygous PMS2 mutation. Leukemia 2008; 22:1078–1080.

    Article  CAS  PubMed  Google Scholar 

  124. Imai K, Catalan N, Plebani A et al. Hyper-IgM syndrome type 4 with a B-lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest 2003; 112:136–142.

    CAS  PubMed  Google Scholar 

  125. Péron S, Pan-Hammarström Q, Imai K et al. A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. J Exp Med 2007; 204:1207–1216.

    Article  PubMed  CAS  Google Scholar 

  126. Durandy A. Immunoglobulin class switch recombination: study through human natural mutants. Philos Trans R Soc Lond B Biol Sci 2009; 364:577–582.

    Article  CAS  PubMed  Google Scholar 

  127. Webster AD, Barnes DE, Arlett CF et al. Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 1992; 339:1508–1509.

    Article  CAS  PubMed  Google Scholar 

  128. Barnes DE, Tomkinson AE, Lehmann AR et al. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 1992; 69:495–503.

    Article  CAS  PubMed  Google Scholar 

  129. Soza S, Leva V, Vago R et al. DNA ligase I deficiency leads to replication-dependent DNA damage and impacts cell morphology without blocking cell cycle progression. Mol Cell Biol 2009; 29:2032–2041.

    Article  CAS  PubMed  Google Scholar 

  130. Petrini JH, Donovan JW, Dimare C et al. Normal V(D)J coding junction formation in DNA ligase I deficiency syndromes. J Immunol 1994; 152:176–178.

    CAS  PubMed  Google Scholar 

  131. Vago R, Leva V, Biamonti G et al. DNA ligase I and Nbs1 proteins associate in a complex and colocalize at replication factories. Cell Cycle 2009; 8(16). [Epub ahead of print].

    Google Scholar 

  132. Hütteroth TH, Litwin SD, German J. Abnormal immune responses of Bloom’s syndrome lymphocytes in vitro. J Clin Invest 1975; 56:1–7.

    Article  PubMed  Google Scholar 

  133. Van Kerckhove CW, Ceuppens JL, Vanderschueren-Lodeweyckx M et al. Bloom’s syndrome. Clinical features and immunologic abnormalities of four patients. Am J Dis Child 1988; 142:1089–1093.

    PubMed  Google Scholar 

  134. German J. Bloom’s syndrome. Dermatol Clin 1995; 13:7–18.

    CAS  PubMed  Google Scholar 

  135. Kondo N, Ozawa T, Kato Y et al. Reduced secreted mu mRNA synthesis in selective IgM deficiency of Bloom’s syndrome. Clin Exp Immunol 1992; 88:35–40.

    Article  CAS  PubMed  Google Scholar 

  136. Taniguchi N, Mukai M, Nagaoki T et al. Impaired B-cell differentiation and T-cell regulatory function in four patients with Bloom’s syndrome. Clin Immunol Immunopathol 1982; 22:247–258.

    Article  CAS  PubMed  Google Scholar 

  137. Hsieh CL, Arlett CF, Lieber MR. V(D)J recombination in ataxia telangiectasia, Bloom’s syndrome and a DNA ligase I-associated immunodeficiency disorder. J Biol Chem 1993; 268:20105–20109.

    CAS  PubMed  Google Scholar 

  138. Babbe H, Chester N, Leder P et al. The Bloom’s syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Mol Cell Biol 2007; 27:1947–1959.

    Article  CAS  PubMed  Google Scholar 

  139. Babbe H, McMenamin J, Hobeika E et al. Genomic instability resulting from Blm deficiency compromises development, maintenance and function of the B-cell lineage. J Immunol 2009; 182:347–360.

    CAS  PubMed  Google Scholar 

  140. Gruhn B, Seidel J, Zintl F et al. Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure. Orphanet J Rare Dis 2007; 2:5.

    Article  PubMed  Google Scholar 

  141. Albert MH, Gennery AR, Greil J et al. Successful Stem cell transplantation for Nijmegen breakage syndrome. Bone Marrow Transplant 2009 (in press).

    Google Scholar 

  142. Dembowska-Baginska B, Perek D, Brozyna A et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen Breakage syndrome (NBS). Pediatr Blood Cancer 2009; 52:186–190.

    Article  PubMed  Google Scholar 

  143. Benjelloun F, Garrigue A, Demerens-de Chappedelaine C et al. Stable and functional lymphoid reconstitution in artemis-deficient mice following lentiviral artemis gene transfer into hematopoietic stem cells. Mol Ther 2008; 16:1490–1499.

    Article  CAS  PubMed  Google Scholar 

  144. Lai CH, Chun HH, Nahas SA et al. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci USA 2004; 101:15676–15681.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Gennery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Slatter, M.A., Gennery, A.R. (2010). Primary Immunodeficiency Syndromes. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_14

Download citation

Publish with us

Policies and ethics