Cornelia de Lange Syndrome

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 685)


Cornelia de Lange syndrome (CdLS) (OMIM # 122470, #300590 and #610759) is an autosomal dominant disorder that is classically characterized by typical facial features, growth and mental retardation, upper limb defects, hirsutism, gastrointestinal and other visceral system involvement. Heterozygous mutations in the cohesin regulator, NIPBL, or the cohesin structural components SMC1A and SMC3, have been identified in approximately 65% of individuals with CdLS. Cohesin regulates sister chromatid cohesion during the mitotis and meiosis. In addition, cohesin has been demonstrated to play a critical role in the regulation of gene expression. Furthermore, multiple proteins in the cohesin pathway are also involved in additional fundamental biological events such as double strand DNA break repair, chromatin remodeling and maintaining genomic stability. Here, we will discuss the biology of cohesin and its associated factors, with emphasis on the clinical manifestations of CdLS and mechanistic studies of the CdLS related pr


Congenital Diaphragmatic Hernia Sister Chromatid Cohesion Origin Recognition Complex Cohesin Complex Cohesin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oostra RJ, Baljet B, Hennekam RC. Brachmann-de Lange syndrome “avant la lettre”. Am J Med Genet 1994; 52:267–268.Google Scholar
  2. 2.
    Brachmann W. Ein fall von symmetrischer monodactylie durch ulnadefekt, mit symmetrischer flughautbildung in den ellenbeugen, sowie anderen abnormalitaten (zwerghaftigkeit, halsrippen, behaarung). Jahrbuch Kinderheilkd 1916; 84.Google Scholar
  3. 3.
    de Lange C. Sur un type nouveau de dégénération (typus Amstelodamensis) [On a new type of degeneration (type Amsterdam)]. Arch Méd Enfants 1933; 36.Google Scholar
  4. 4.
    de Knecht-van Eekelen A, Hennekam RC. Historical study: Cornelia C. de Lange (1871–1950)—a pioneer in clinical genetics. Am J Med Genet 1994; 52:257–266.PubMedGoogle Scholar
  5. 5.
    Jackson L, Kline AD, Barr MA et al. de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet 1993; 47:940–946.PubMedGoogle Scholar
  6. 6.
    Ireland M, Donnai D, Burn J. Brachmann-de Lange syndrome. Delineation of the clinical phenotype. Am J Med Genet 1993; 47:959–964.PubMedGoogle Scholar
  7. 7.
    Opitz JM. The Brachmann-de Lange syndrome. Am J Med Genet 1985; 22:89–102.PubMedGoogle Scholar
  8. 8.
    Deardorff MA, Kaur M, Yaeger D et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 2007; 80:485–494.PubMedGoogle Scholar
  9. 9.
    Van Allen MI, Filippi G, Siegel-Bartelt J et al. Clinical variability within Brachmann-de Lange syndrome: a proposed classification system. Am J Med Genet 1993; 47:947–958.PubMedGoogle Scholar
  10. 10.
    Selicorni A, Lalatta F, Livini E et al. Variability of the Brachmann-de Lange syndrome. Am J Med Genet 1993; 47:977–982.PubMedGoogle Scholar
  11. 11.
    Saul RA, Rogers RC, Phelan MC et al. Brachmann-de Lange syndrome: diagnostic difficulties posed by the mild phenotype. Am J Med Genet 1993; 47:999–1002.PubMedGoogle Scholar
  12. 12.
    Allanson JE, Hennekam RC, Ireland M. De Lange syndrome: subjective and objective comparison of the classical and mild phenotypes. J Med Genet 1997; 34:645–650.PubMedGoogle Scholar
  13. 13.
    Greenberg F, Robinson LK. Mild Brachmann-de Lange syndrome: changes of phenotype with age. Am J Med Genet 1989; 32:90–92.PubMedGoogle Scholar
  14. 14.
    Chodirker BN, Chudley AE. Male-to-male transmission of mild Brachmann-de Lange syndrome. Am J Med Genet 1994; 52:331–333.PubMedGoogle Scholar
  15. 15.
    Russell KL, Ming JE, Patel K et al. Dominant paternal transmission of Cornelia de Lange syndrome: a new case and review of 25 previously reported familial recurrences. Am J Med Genet 2001; 104:267–276.PubMedGoogle Scholar
  16. 16.
    Kline AD, Grados M, Sponseller P et al. Natural history of aging in Cornelia de Lange syndrome. Am J Med Genet 2007; 145C:248–260.PubMedGoogle Scholar
  17. 17.
    Moss JF, Oliver C, Berg K et al. Prevalence of autism spectrum phenomenology in Cornelia de Lange and Cri du Chat syndromes. Am J Ment Retard 2008; 113:278–291.PubMedGoogle Scholar
  18. 18.
    Borck G, Redon R, Sanlaville D et al. NIPBL mutations and genetic heterogeneity in Cornelia de Lange syndrome. J Med Genet 2004; 41:e128.PubMedGoogle Scholar
  19. 19.
    Borck G, Zarhrate M, Cluzeau C et al. Father-to-daughter transmission of Cornelia de Lange syndrome caused by a mutation in the 5′ untranslated region of the NIPBL Gene. Hum Mutat 2006; 27:731–735.PubMedGoogle Scholar
  20. 20.
    Aitken DA, Ireland M, Berry E et al. Second-trimester pregnancy associated plasma protein-A levels are reduced in Cornelia de Lange syndrome pregnancies. Prenatal Diagnosis 1999; 19:706–710.PubMedGoogle Scholar
  21. 21.
    Arbuzova S, Nikolenko M, Krantz D et al. Low first-trimester pregnancy-associated plasma protein-A and Cornelia de Lange syndrome. Prenatal Diagnosis 2003; 23:864.PubMedGoogle Scholar
  22. 22.
    Westergaard J G, Chemnitz J, Teisner B et al. Pregnancy-associated plasma protein A: a possible marker in the classification and prenatal diagnosis of Cornelia de Lange syndrome. Prenatal Diagnosis 1983; 3:225–232.PubMedGoogle Scholar
  23. 23.
    Huang WH, Porto M. Abnormal first-trimester fetal nuchal translucency and Cornelia De Lange syndrome. Obstet Gynecol 2002; 99:956–958.PubMedGoogle Scholar
  24. 24.
    Kliewer MA, Kahler SG, Hertzberg BS et al. Fetal biometry in the Brachmann-de Lange syndrome. Am J Med Genet 1993; 47:1035–1041.PubMedGoogle Scholar
  25. 25.
    Lalatta F, Russo S, Gentilin B et al. Prenatal/neonatal pathology in two cases of Cornelia de Lange syndrome harboring novel mutations of NIPBL. Genet Med 2007; 9:188–194.PubMedGoogle Scholar
  26. 26.
    Le Vaillant C, Quere MP, David A et al. Prenatal diagnosis of a’ minor’ form of Brachmann-de Lange syndrome by three-dimensional sonography and three-dimensional computed tomography. Fetal Diagn Ther 2004; 19:155–159.PubMedGoogle Scholar
  27. 27.
    Marino T, Wheeler PG, Simpson LL et al. Fetal diaphragmatic hernia and upper limb anomalies suggest Brachmann-de Lange syndrome. Prenatal Diagnosis 2002; 22:144–147.PubMedGoogle Scholar
  28. 28.
    Bozner P, Blackburn W, Cooley NR Jr. Bilateral ulnar agenesis: case report and review of the literature. Pediatr Pathol Lab Med 1995; 15:895–913.PubMedGoogle Scholar
  29. 29.
    Jelsema RD, Isada NB, Kazzi NJ et al. Prenatal diagnosis of congenital diaphragmatic hernia not amenable to prenatal or neonatal repair: Brachmann-de Lange syndrome. Am J Med Genet 1993; 47:1022–1023.PubMedGoogle Scholar
  30. 30.
    Stoll C, Alembik Y, Dott B et al. Associated malformations in cases with congenital diaphragmatic hernia. Genetic counseling (Geneva, Switzerland) 2008; 19:331–339.Google Scholar
  31. 31.
    Baynam G, Goldblatt J, Walpole I. Deletion of 8p23.1 with features of Cornelia de Lange syndrome and congenital diaphragmatic hernia and a review of deletions of 8p23.1 to 8pter? A further locus for Cornelia de Lange syndrome. Am J Med Genet 2008; 146A:1565–1570.PubMedGoogle Scholar
  32. 32.
    Niu DM, Huang JY, Li HY et al. Paternal gonadal mosaicism of NIPBL mutation in a father of siblings with Cornelia de Lange syndrome. Prenatal Diagnosis 2006; 26:1054–1057.PubMedGoogle Scholar
  33. 33.
    Kousseff BG, Newkirk P, Root AW. Brachmann-de Lange syndrome. 1994 update. Arch Pediatr Adolesc Med 1994; 148:749–755.PubMedGoogle Scholar
  34. 34.
    DeScipio C, Kaur M, Yaeger D et al. Chromosome rearrangements in cornelia de Lange syndrome (CdLS): report of a der(3)t(3;12)(p25.3;p13.3) in two half sibs with features of CdLS and review of reported CdLS cases with chromosome rearrangements. Am J Med Genet A 2005; 137:276–282.Google Scholar
  35. 35.
    Meins M, Hagh JK, Gerresheim F et al. Novel case of dup(3q) syndrome due to a de novo interstitial duplication 3q24–q26.31 with minimal overlap to the dup(3q) critical region. Am J Med Genet A 2005; 132:84–89.Google Scholar
  36. 36.
    McKenney RR, Elder FF, Garcia J et al. Brachmann-de Lange syndrome: autosomal dominant inheritance and male-to-male transmission. Am J Med Genet 1996; 66:449–452.PubMedGoogle Scholar
  37. 37.
    Sciorra LJ, Bahng K, Lee ML. Trisomy in the distal end of the long arm of chromosome 3. A condition clinically similar to the Cornelia de Lange syndrome. Am J Dis Child 1979; 133:727–730.PubMedGoogle Scholar
  38. 38.
    Wilson GN, Hieber VC, Schmickel RD. The association of chromosome 3 duplication and the Cornelia de Lange syndrome. J Pediatr 1978; 93:783–788.PubMedGoogle Scholar
  39. 39.
    Holder SE, Grimsley LM, Palmer RW et al. Partial trisomy 3q causing mild Cornelia de Lange phenotype. J Med Genet 1994; 31:150–152.PubMedGoogle Scholar
  40. 40.
    Aqua MS, Rizzu P, Lindsay EA et al. Duplication 3q syndrome: molecular delineation of the critical region. Am J Med Genet 1995; 55:33–37.PubMedGoogle Scholar
  41. 41.
    Ireland M, English C, Cross I et al. Partial trisomy 3q and the mild Cornelia de Lange syndrome phenotype. J Med Genet 1995; 32:837–838.PubMedGoogle Scholar
  42. 42.
    Rizzu P, Haddad BR, Vallcorba I et al. Delineation of a duplication map of chromosome 3q: a new case confirms the exclusion of 3q25–q26.2 from the duplication 3q syndrome critical region. Am J Med Genet 1997; 68:428–432.PubMedGoogle Scholar
  43. 43.
    Smith M, Herrell S, Lusher M et al. Genomic organisation of the human chordin gene and mutation screening of candidate Cornelia de Lange syndrome genes. Hum Genet 1999; 105:104–111.PubMedGoogle Scholar
  44. 44.
    Blaschke RJ, Monaghan AP, Schiller S et al. SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart and limb development. Proc Natl Acad Sci USA 1998; 95:2406–2411.PubMedGoogle Scholar
  45. 45.
    Ozkinay F, Cogulu O, Gunduz C et al. A case of Brachman de Lange syndrome with cerebellar vermis hypoplasia. Clin Dysmorphol 1998; 7:303–305.PubMedGoogle Scholar
  46. 46.
    Tonkin ET, Smith M, Eichhorn P et al. A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q26.3. Hum Genet 2004; 115:139–148.PubMedGoogle Scholar
  47. 47.
    Krantz ID, Tonkin E, Smith M et al. Exclusion of linkage to the CDL1 gene region on chromosome 3q26.3 in some familial cases of Cornelia de Lange syndrome. Am J Med Genet 2001; 101:120–129.PubMedGoogle Scholar
  48. 48.
    Krantz ID, McCallum J, DeScipio C et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 2004; 36:631–635.PubMedGoogle Scholar
  49. 49.
    Tonkin ET, Wang TJ, Lisgo S et al. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 2004; 36:636–641.PubMedGoogle Scholar
  50. 50.
    Musio A, Selicorni A, Focarelli ML et al. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 2006; 38:528–530.PubMedGoogle Scholar
  51. 51.
    Brown CJ, Miller AP, Carrel L et al. The DXS423E gene in Xp11.21 escapes X chromosome inactivation. Hum Mol Genet 1995; 4:251–255.PubMedGoogle Scholar
  52. 52.
    Strachan T. Cornelia de Lange Syndrome and the link between chromosomal function, DNA repair and developmental gene regulation. Curr Opin Genet Dev 2005; 15:258–264.PubMedGoogle Scholar
  53. 53.
    Gillis LA, McCallum J, Kaur M et al. NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Hum Genet 2004; 75:610–623.PubMedGoogle Scholar
  54. 54.
    Bhuiyan ZA, Klein M, Hammond P et al. Genotype-phenotype correlations of 39 patients with Cornelia De Lange syndrome: the Dutch experience. J Med Genet 2006; 43:568–575.PubMedGoogle Scholar
  55. 55.
    Yan J, Saifi GM, Wierzba TH et al. Mutational and genotype-phenotype correlation analyses in 28 Polish patients with Cornelia de Lange syndrome. Am J Med Genet A 2006; 140:1531–1541.PubMedGoogle Scholar
  56. 56.
    Schoumans J, Wincent J, Barbaro M et al. Comprehensive mutational analysis of a cohort of Swedish Cornelia de Lange syndrome patients. Eur J Hum Genet 2007; 15:143–149.PubMedGoogle Scholar
  57. 57.
    Selicorni A, Russo S, Gervasini C et al. Clinical score of 62 Italian patients with Cornelia de Lange syndrome and correlations with the presence and type of NIPBL mutation. Clin Genet 2007; 72:98–108.PubMedGoogle Scholar
  58. 58.
    Borck G, Zarhrate M, Bonnefont JP et al. Incidence and clinical features of X-linked Cornelia de Lange syndrome due to SMC1L1 mutations. Hum Mutat 2007; 28:205–206.PubMedGoogle Scholar
  59. 59.
    Bhuiyan ZA, Stewart H, Redeker EJ et al. Large genomic rearrangements in NIPBL are infrequent in Cornelia de Lange syndrome. Eur J Hum Genet 2007; 15:505–508.PubMedGoogle Scholar
  60. 60.
    Kaur M, DeScipio C, McCallum J et al. Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am J Med Genet A 2005; 138:27–31.PubMedGoogle Scholar
  61. 61.
    Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M et al. Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol Genet 2007; 16:1478–1487.PubMedGoogle Scholar
  62. 62.
    Charles AK, Porter HJ, Sams V et al. Nephrogenic rests and renal abnormalities in Brachmann-de Lange syndrome. Pediatr Pathol Lab Med 1997; 17:209–219.PubMedGoogle Scholar
  63. 63.
    Nasmyth K, Haering CH. The structure and function of SMC and kleisin complexes. Annu Rev Biochem 2005; 74:595–648.PubMedGoogle Scholar
  64. 64.
    Hopfner KP, Karcher A, Shin DS et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 2000; 101:789–800.PubMedGoogle Scholar
  65. 65.
    Walker JE, Saraste M, Runswick MJ et al. Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1:945–951.PubMedGoogle Scholar
  66. 66.
    Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell 2003; 112:765–777.PubMedGoogle Scholar
  67. 67.
    Haering CH, Lowe J, Hochwagen A et al. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 2002; 9:773–788.PubMedGoogle Scholar
  68. 68.
    Haering CH, Schoffnegger D, Nishino T et al. Structure and stability of cohesin’s Smc1-kleisin interaction. Mol Cell 2004; 15:951–964.PubMedGoogle Scholar
  69. 69.
    Hirano T. At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 2006; 7:311–322.PubMedGoogle Scholar
  70. 70.
    Skibbens RV. Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion. J Cell Biol 2005; 169::841–846.Google Scholar
  71. 71.
    Glynn EF, Megee PC, Yu HG et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004; 2:E259.PubMedGoogle Scholar
  72. 72.
    Lengronne A, Katou Y, Mori S et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 2004; 430:573–578.PubMedGoogle Scholar
  73. 73.
    Partridge JF, Scott KS, Bannister AJ et al. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol 2002; 12:1652–1660.PubMedGoogle Scholar
  74. 74.
    Bernard P, Maure JF, Partridge JF et al. Requirement of heterochromatin for cohesion at centromeres. Science 2001; 294:2539–2542.PubMedGoogle Scholar
  75. 75.
    Chang CR, Wu CS, Hom Y et al. Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 2005; 19:3031–3042.PubMedGoogle Scholar
  76. 76.
    Unal E, Arbel-Eden A, Sattler U et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 2004; 16:991–1002.PubMedGoogle Scholar
  77. 77.
    Sumara I, Vorlaufer E, Stukenberg PT et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 2002; 9:515–525.PubMedGoogle Scholar
  78. 78.
    Kueng S, Hegemann B, Peters BH et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 2006; 127:955–967.PubMedGoogle Scholar
  79. 79.
    Hauf S, Roitinger E, Koch B et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 2005; 3:e69.PubMedGoogle Scholar
  80. 80.
    McGuinness BE, Hirota T, Kudo NR et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 2005; 3:e86.PubMedGoogle Scholar
  81. 81.
    Schmitz J, Watrin E, Lenart P et al. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 2007; 17:630–636.PubMedGoogle Scholar
  82. 82.
    Losada A, Yokochi T, Hirano T. Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 2005; 118:2133–2141.PubMedGoogle Scholar
  83. 83.
    Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 1999; 400:37–42.PubMedGoogle Scholar
  84. 84.
    Ciosk R, Zachariae W, Michaelis C et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 1998; 93:1067–1076.PubMedGoogle Scholar
  85. 85.
    Guacci V. Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells 2007; 12:693–708.PubMedGoogle Scholar
  86. 86.
    Watanabe Y. Sister chromatid cohesion along arms and at centromeres. Trends Genet 2005; 21:405–412.PubMedGoogle Scholar
  87. 87.
    Jones S, Sgouros J. The cohesin complex: sequence homologies, interaction networks and shared motifs. Genome Biol 2001; 2:RESEARCH0009.PubMedGoogle Scholar
  88. 88.
    Tomonaga T, Nagao K, Kawasaki Y et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 2000; 14:2757–2770.PubMedGoogle Scholar
  89. 89.
    Onn I, Heidinger-Pauli JM, Guacci V et al. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 2008; 24:105–129.PubMedGoogle Scholar
  90. 90.
    Hakimi MA, Bochar DA, Schmiesing JA et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 2002; 418:994–998.PubMedGoogle Scholar
  91. 91.
    Weber SA, Gerton JL, Polancic JE et al. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2004; 2:E260.PubMedGoogle Scholar
  92. 92.
    Yang XM, Mehta S, Uzri D et al. Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol Cell Biol 2004; 24:5290–5303.PubMedGoogle Scholar
  93. 93.
    Lam WW, Peterson EA, Yeung M et al. Condensin is required for chromosome arm cohesion during mitosis. Genes Dev 2006; 20:2973–2984.PubMedGoogle Scholar
  94. 94.
    Shimada K, Gasser SM. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae. Cell 2007; 128:85–99.PubMedGoogle Scholar
  95. 95.
    Monje-Casas F, Prabhu VR, Lee BH et al. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 2007; 128:477–490.PubMedGoogle Scholar
  96. 96.
    Diaz-Martinez LA, Gimenez-Abian JF, Azuma Y et al. PIASgamma is required for faithful chromosome segregation in human cells. PLoS ONE 2006; 1:e53.PubMedGoogle Scholar
  97. 97.
    Rollins RA, Morcillo P, Dorsett D. Nipped B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 1999; 152:577–593.PubMedGoogle Scholar
  98. 98.
    Dorsett D, Eissenberg JC, Misulovin Z et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 2005; 132:4743–4753.PubMedGoogle Scholar
  99. 99.
    Rollins RA, Korom M, Aulner N et al. Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 2004; 24:3100–3111.PubMedGoogle Scholar
  100. 100.
    Dorsett D. Adherin: key to the cohesin ring and cornelia de Lange syndrome. Curr Biol 2004; 14:R834–836.PubMedGoogle Scholar
  101. 101.
    Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science 2003; 302:1727–1736.PubMedGoogle Scholar
  102. 102.
    Seitan VC, Banks P, Laval S et al. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol 2006; 4:e242.PubMedGoogle Scholar
  103. 103.
    Schuldiner O, Berdnik D, Levy JM et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 2008; 14:227–238.PubMedGoogle Scholar
  104. 104.
    Pauli A, Althoff F, Oliveira RA et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 2008; 14:239–251.PubMedGoogle Scholar
  105. 105.
    Horsfield JA, Anagnostou SH, Hu JK et al. Cohesin-dependent regulation of Runx genes. Development 2007; 134:2639–2649.PubMedGoogle Scholar
  106. 106.
    Lara-Pezzi E, Pezzi N, Prieto I et al. Evidence of a transcriptional co-activator function of cohesin STAG/SA/Scc3. J Biol Chem 2004; 279:6553–6559.PubMedGoogle Scholar
  107. 107.
    Zhang B, Jain S, Song H et al. Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 2007; 134:3191–3201.PubMedGoogle Scholar
  108. 108.
    Wendt KS, Yoshida K, Itoh T et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008; 451:796–801.PubMedGoogle Scholar
  109. 109.
    Parelho V, Hadjur S, Spivakov M et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008; 132:422–433.PubMedGoogle Scholar
  110. 110.
    Stedman W, Kang H, Lin S et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 2008; 27:654–666.PubMedGoogle Scholar
  111. 111.
    Yusufzai TM, Tagami H, Nakatani Y et al. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 2004; 13:291–298.PubMedGoogle Scholar
  112. 112.
    Misulovin Z, Schwartz YB, Li XY et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2007.Google Scholar
  113. 113.
    Misulovin Z, Schwartz YB, Li XY et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2008; 117:89–102.PubMedGoogle Scholar
  114. 114.
    Gause M, Webber HA, Misulovin Z et al. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51–66.PubMedGoogle Scholar
  115. 115.
    Dorsett D, Krantz ID. On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 2009; 1151:22–37.PubMedGoogle Scholar
  116. 116.
    Revenkova E, Focarelli ML, Susani L et al. Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA. Hum Mol Genet 2009; 18:418–427.PubMedGoogle Scholar
  117. 117.
    Filipski J, Mucha M. Structure, function and DNA composition of Saccharomyces cerevisiae chromatin loops. Gene 2002; 300:63–68.PubMedGoogle Scholar
  118. 118.
    Kobayashi T, Horiuchi T, Tongaonkar P et al. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 2004; 117:441–453.PubMedGoogle Scholar
  119. 119.
    Lechner MS, Schultz DC, Negorev D et al. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 2005; 331:929–937.PubMedGoogle Scholar
  120. 120.
    Vega H, Waisfisz Q, Gordillo M et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 2005; 37:468–470.PubMedGoogle Scholar
  121. 121.
    Kitao S, Shimamoto A, Goto M et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 1999; 22:82–84.PubMedGoogle Scholar
  122. 122.
    Oikawa K, Ohbayashi T, Kiyono T et al. Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res 2004; 64:3545–3549.PubMedGoogle Scholar
  123. 123.
    Barber TD, McManus K, Yuen KW et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 2008; 105:3443–3448.PubMedGoogle Scholar
  124. 124.
    Liu J, Krantz ID. Cohesin and human disease. Annu Rev Genomics Hum Genet 2008; 9:303–320.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Division of Human and Molecular GeneticsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Genetic Services of Western Australia Princess Margaret Hospital for Children School of Paediatrics and Child HealthThe University of Western AustraliaPerthAustralia

Personalised recommendations