Advertisement

Characterisation of Insect Nicotinic Acetylcholine Receptors by Heterologous Expression

  • Neil S. Millar
  • Stuart J. Lansdell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 683)

Abstract

As with other neurotransmitter receptors and ion channels, characterisation of nicotinic acetylcholine receptors (nAChRs) has relied heavily on studies conducted with cloned receptors expressed in artificial expression systems. Although much has been achieved in recent years by such studies, considerable problems have been encountered in the heterologous expression of several nAChR subtypes; problems that have been particularly pronounced for insect nAChRs. Here we will review studies that have been conducted with nAChRs cloned from insects, with emphasis on experimental strategies that have been employed in an attempt to circumvent the problems associated with inefficient heterologous expression of insect nAChRs. These approaches include the expression of hybrid nAChRs (containing insect nAChR subunit co-expressed with vertebrate subunits), artificial subunit chimeras and the co-expression of molecular chaperones such as RIC-3.

Keywords

Heterologous Expression Xenopus Oocyte Nicotinic Acetylcholine Receptor Radioligand Binding Musca Domestica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sattelle DB. Acetylcholine receptors of insects. Adv Insect Physiol 1980; 15:215–315.CrossRefGoogle Scholar
  2. 2.
    Matsuda K, Buckingham SD, Kleier D et al. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharm Sci 2001; 22:573–580.CrossRefPubMedGoogle Scholar
  3. 3.
    Millar NS, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci 2007; 7:53–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Green WN, Millar NS. Ion-channel assembly. Trends Neurosci 1995; 18:280–287.CrossRefPubMedGoogle Scholar
  5. 5.
    Le Novère N, Corringer P-J, Changeux J-P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 2002; 53:447–456.CrossRefPubMedGoogle Scholar
  6. 6.
    Millar NS. Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 2003; 31:869–874.CrossRefPubMedGoogle Scholar
  7. 7.
    Jones AK, Brown AM, Sattelle DB. Insect nicotinic acetylcholine receptor gene families: from genetic model organisms to vector, pest and beneficial species. Invert Neurosci 2007; 7:67–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones AK, Grauso M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 2005; 85:176–187.CrossRefPubMedGoogle Scholar
  9. 9.
    Jones AK, Raymond-Delpech V, Thany SH et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 2006; 16:1422–1430.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 2007; 8:327 doi: 310.1186/1471-2164-1188-1327.CrossRefPubMedGoogle Scholar
  11. 11.
    Shao Y-M, Dong K, Zhang C-X. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics 2007; 8:324 doi: 310.1186/1471-2164-1188-1324.CrossRefPubMedGoogle Scholar
  12. 12.
    Lukas RJ, Changeux J-P, Le Novère N et al. International union of pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999; 51:397–401.PubMedGoogle Scholar
  13. 13.
    Noda M, Takahashi H, Tanabe T et al. Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 1982; 299:793–797.CrossRefPubMedGoogle Scholar
  14. 14.
    Couturier S, Bertrand D, Matter JM et al. A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 1990; 5:847–856.CrossRefPubMedGoogle Scholar
  15. 15.
    Marshall J, Buckingham SD, Shingai R et al. Sequence and functional expression of a single α subunit of an insect nicotinic acetylcholine receptor. EMBO J 1990; 9:4391–4398.PubMedGoogle Scholar
  16. 16.
    Amar M, Thomas P, Wonnacott S et al. A nicotinic acetylcholine receptor subunit from insect brain forms a nondesensitising homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes. Neurosci Letts 1995; 199:107–110.CrossRefGoogle Scholar
  17. 17.
    Jones AK, Marshall J, Blake AD et al. Sg β1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster D β1 subunit. Invert Neurosci 2005; 5:147–155.CrossRefPubMedGoogle Scholar
  18. 18.
    Sawruk E, Schloss P, Betz H et al. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit. EMBO J 1990; 9:2671–2677.PubMedGoogle Scholar
  19. 19.
    Bertrand D, Ballivet M, Gomez M et al. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur J Neurosci 1994; 6:869–875.CrossRefPubMedGoogle Scholar
  20. 20.
    Sgard F, Fraser SP, Katkowska MJ et al. Cloning and functional characterisation of two novel nicotinic acetylcholine receptor α subunits from the insect pest Myzus persicae. J Neurochem 1998; 71:903–912.CrossRefPubMedGoogle Scholar
  21. 21.
    Thany SH, Lenaers G, Crozatier M et al. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 2003; 12:255–262.CrossRefPubMedGoogle Scholar
  22. 22.
    Thany SH, Crozatier M, Raymond-Delpech V et al. Apis α2, Apisα7-1 and Apisa7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 2005; 344:125–132.CrossRefPubMedGoogle Scholar
  23. 23.
    Gao J-R, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Md α5 and Md β3 on autosome 1 of Musca domestica are not involved in spinosad resistance. Insect Mol Biol 2007; 16:691–701.CrossRefPubMedGoogle Scholar
  24. 24.
    Gao J-R, Deacutis JM, Scott JG. Characterization of the nicotinic acetylcholine receptor gene Md α2 from the house fly Musca domestica. Arch Insect Biochem Physiol 2007; 64:30–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Gao J-R, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Md α6 from Musca domestica is diversified via posttranscriptional modification. Insect Mol Biol 2007; 16:325–334.CrossRefPubMedGoogle Scholar
  26. 26.
    Rinkevich FD, Scott JG. Transcriptional diversity and allelic variation in nicotinic acetylcholine receptor subunits of the red flour beetle, Tribolium castaneum. Insect Mol Biol 2009; 18:233–242.CrossRefPubMedGoogle Scholar
  27. 27.
    Eastham HM, Lind RJ, Eastlake JL et al. Characterization of a nicotinic acetylcholine receptor from the insect Manduca sexta. Eur J Neurosci 1998; 10:879–889.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu Z, Williamson MS, Lansdell SJ et al. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J Neurochem 2006; 99:1273–1281.CrossRefPubMedGoogle Scholar
  29. 29.
    Bass C, Lansdell SJ, Millar NS et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Insect Biochem Mol Biol 2006; 36:86–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Hermsen B, Stetzer E, Thees R et al. Neuronal nicotinic receptors in the Locust Locusta migratoria: cloning and expression. J Biol Chem 1998; 273:18394–18404.CrossRefPubMedGoogle Scholar
  31. 31.
    Lansdell SJ, Schmitt B, Betz H et al. Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J Neurochem 1997; 68:1812–1819.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang Y, Williamson MS, Devonshire AL et al. Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. J Neurochem 1999; 73:380–389.CrossRefPubMedGoogle Scholar
  33. 33.
    Lansdell SJ, Millar NS. The influence of nicotinic receptor subunit composition upon agonist, α-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacol 2000; 39:671–679.CrossRefGoogle Scholar
  34. 34.
    Lansdell SJ, Millar NS. Cloning and heterologous expression of D α4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacol 2000; 39:2604–2614.CrossRefGoogle Scholar
  35. 35.
    Liu Z, Williamson MS, Lansdell SJ et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 2005; 102:8420–8425.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee H-J, Rocheleau T, Zhang H-G et al. Expression of a Drosophila GABA receptor in a baculovirus insect cell system. FEBS Lett 1993; 335:315–318.CrossRefPubMedGoogle Scholar
  37. 37.
    Millar NS, Buckingham SD, Sattelle DB. Stable expression of a functional homo-oligomeric Drosophila GABA receptor in a Drosophila cell line. Proc R Soc Lond B 1994; 258:307–314.CrossRefGoogle Scholar
  38. 38.
    Shotkoski F, Zhang HG, Jackson MB et al. Stable expression of insect GABA receptors in insect cell lines. Promoters for efficient expression of Drosophila and mosquito Rdl GABA receptors in stably transformed mosquito cell lines. FEBS Lett 1996; 380:257–262.CrossRefPubMedGoogle Scholar
  39. 39.
    Millar NS. Heterologous expression of mammalian and insect neuronal nicotinic acetylcholine receptors in cultured cell lines. Biochem Soc Trans 1999; 27:944–950.PubMedGoogle Scholar
  40. 40.
    Schulz R, Sawruk E, Mülhardt C et al. Da3, a new functional a subunit of nicotinic acetylcholine receptors from Drosophila. J Neurochem 1998; 71:853–862.CrossRefPubMedGoogle Scholar
  41. 41.
    Huang Y, Williamson MS, Devonshire AL et al. Cloning, heterologous expression and co-assembly of Mp β1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett 2000; 284:116–120.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu Z, Han Z, Liu S et al. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors. J Neurochem 2008; 106:224–230.CrossRefPubMedGoogle Scholar
  43. 43.
    Claudio T, Green WN, Hartman DS et al. Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science 1987; 238:1688–1694.CrossRefPubMedGoogle Scholar
  44. 44.
    Eiselé J-L, Bertrand S, Galzi J-L et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 1993; 366:479–483.CrossRefPubMedGoogle Scholar
  45. 45.
    Cooper ST, Millar NS. Host cell-specific folding and assembly of the neuronal nicotinic acetylcholine receptor α7 subunit. J Neurochem 1997; 68:2140–2151.CrossRefPubMedGoogle Scholar
  46. 46.
    Kassner PD, Berg DK. Differences in the fate of neuronal acetylcholine receptor protein expressed in neurons and stably transfected cells. J Neurobiol 1997; 33:968–982.CrossRefPubMedGoogle Scholar
  47. 47.
    Rangwala F, Drisdel RC, Rakhilin S et al. Neuronal α-bungarotoxin receptors differ structurally from other nicotinic acetylcholine receptors. J Neurosci 1997; 17:8201–8212.PubMedGoogle Scholar
  48. 48.
    Cooper ST, Millar NS. Host cell-specific folding of the neuronal nicotinic receptor α8 subunit. J Neurochem 1998; 70:2585–2593.CrossRefPubMedGoogle Scholar
  49. 49.
    Quiram PA, Sine SM. Identification of residues in the neuronal α7 acetylcholine receptor that confer selectivity for conotoxin ImI. J Biol Chem 1998; 273:11001–11006.CrossRefPubMedGoogle Scholar
  50. 50.
    Cooper ST, Harkness PC, Baker ER et al. Upregulation of cell-surface a4β2 neuronal nicotinic receptors by lower temperature and expression of chimeric subunits. J Biol Chem 1999; 274:27145–27152.CrossRefPubMedGoogle Scholar
  51. 51.
    Verbitsky M, Plazas PV, Elgoyhen AB. Functional expression and properties of a nicotinic a9/5-HT3A chimeric receptor. NeuroReport 2003; 14:1931–1934.CrossRefPubMedGoogle Scholar
  52. 52.
    Baker ER, Zwart R, Sher E et al. Pharmacological properties of α9α 10 nicotinic acetylcholine receptors revealed by heterologous expression of subunit chimeras. Mol Pharmacol 2004; 65:453–460.CrossRefPubMedGoogle Scholar
  53. 53.
    Lansdell SJ, Millar NS. Molecular characterisation of D α6 and D α7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity α-bungarotoxin binding site revealed by expression of subunit chimeras. J Neurochem 2004; 90:479–489.CrossRefPubMedGoogle Scholar
  54. 54.
    Millar NS. RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol 2008; 153:S177–S183.CrossRefPubMedGoogle Scholar
  55. 55.
    Halevi S, McKay J, Palfreyman M et al. The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 2002; 21:1012–1020.CrossRefPubMedGoogle Scholar
  56. 56.
    Castillo M, Mulet J, Gutiérrez LM et al. Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Biol Chem 2005; 280:27062–27068.CrossRefPubMedGoogle Scholar
  57. 57.
    Lansdell SJ, Gee VJ, Harkness PC et al. RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol 2005; 68:1431–1438.CrossRefPubMedGoogle Scholar
  58. 58.
    Williams ME, Burton B, Urrutia A et al. Ric-3 promotes functional expression of the nicotinic acetylcholine receptor α7 subunit in mammalian cells. J Biol Chem 2005; 280:1257–1263.CrossRefPubMedGoogle Scholar
  59. 59.
    Lansdell SJ, Collins T, Yabe A et al. Host-cell specific effects of the nicotinic acetylcholine receptor chaperone RIC-3 revealed by a comparison of human and Drosophila RIC-3 homologues. J Neurochem 2008; 105:1573–1581.CrossRefPubMedGoogle Scholar
  60. 60.
    Chamaon K, Schulz R, Smalla K-H et al. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the α-subunit Dα3 and the β-type subunit ARD co-assemble within the same receptor complex. FEBS Lett 2000; 482:189–192.CrossRefPubMedGoogle Scholar
  61. 61.
    Schulz R, Bertrand S, Chamaon K et al. Neuronal nicotinic acetylcholine receptors from Drosophila: two different types of a subunits coassemble within the same receptor complex. J Neurochem 2000; 74:2537–2546.CrossRefPubMedGoogle Scholar
  62. 62.
    Chamaon K, Smalla K-H, Thomas U et al. Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem 2002; 80:149–157.CrossRefPubMedGoogle Scholar
  63. 63.
    Liu Z, Han Z, Zhang Y et al. Heteromeric co-assembly of two insect nicotinic acetylcholine receptor α subunits: influence on sensitivity to neonicotinoid insecticides. J Neurochem 2009; 108:498–506.CrossRefPubMedGoogle Scholar
  64. 64.
    Matsuda K, Buckingham SD, Freeman JC et al. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol 1998; 123:518–524.CrossRefPubMedGoogle Scholar
  65. 65.
    Ihara M, Matsuda K, Otake M et al. Diverse actions of neonicotinoids on chicken α7, α4β2 and Drosophila-chicken SADβ2 and ALSβ2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacol 2003; 45:133–144.CrossRefGoogle Scholar
  66. 66.
    Ihara M, Matsuda K, Shimomura M et al. Super agonist actions of clothianidin and related compounds on the SADβ2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Biosci Biotechnol Biochem 2004; 68:761–763.CrossRefPubMedGoogle Scholar
  67. 67.
    Raymond Delpech V, Ihara M, Coddou C et al. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Invert Neuroscience 2003; 5:29–35.CrossRefGoogle Scholar
  68. 68.
    Shimomura M, Yokota M, Matsuda K et al. Roles of loop C and the loop B-C interval of the nicotinic receptor a subunit in its selective interactions with imidacloprid in insects. Neurosci Lett 2004; 363:195–198.CrossRefPubMedGoogle Scholar
  69. 69.
    Shimomura M, Satoh H, Yokota M et al. Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila D α2 subunit, which contributes to neonicotinoid sensitivity. Neurosci Lett 2005; 385:168–172.CrossRefPubMedGoogle Scholar
  70. 70.
    Shimomura M, Yokota M, Ihara M et al. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol 2006; 70:1255–1263.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang Y. Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation. Neurosci Lett 2008; 446:97–100.CrossRefPubMedGoogle Scholar
  72. 72.
    Yao X, Song F, Chen F et al. Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor β subunits influence neonicotinoid selectivity. Insect Biochem Mol Biol 2008; 38:834–840.CrossRefPubMedGoogle Scholar
  73. 73.
    Lansdell SJ, Millar NS. D β3, an atypical nicotinic acetylcholine receptor subunit from Drosophila: molecular cloning, heterologous expression and coassembly. J Neurochem 2002; 80:1009–1018.CrossRefPubMedGoogle Scholar
  74. 74.
    Tomizawa M, Millar NS, Casida JE. Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. Insect Biochem Mol Biol 2005; 35:1347–1355.CrossRefPubMedGoogle Scholar
  75. 75.
    Honda H, Tomizawa M, Casida JE. Insect nicotinic acetylcholine receptors: neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J Agric Food Chem 2006; 54:3365–3371.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK

Personalised recommendations