Advertisement

Identification of Cholinergic Synaptic Transmission in the Insect Nervous System

  • Steeve Hervé Thany
  • Hélène Tricoire-Leignel
  • Bruno Lapied
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 683)

Abstract

A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes. Combined application of all these techniques reveals a widespread expression of ChAT and AChE activities in the insect central nervous system and peripheral sensory neurons which implicates ACh as a key neurotransmitter.

The discovery of the snake toxin alpha-bungatoxin has helped to identify nicotinic acetylcholine receptors (nAChRs). In fact, nicotine when applied to insect neurons, resulted in the generation of an inward current through the activation of nicotinic receptors which were blocked by alpha-bungarotoxin. Thus, insect nAChRs have been divided into two categories, sensitive and insensitive to this snake toxin. Up to now, the recent characterization and distribution pattern of insect nAChR subunits and the biochemical evidence that the insect central nervous system contains different classes of cholinergic receptors indicated that ACh is involved in several sensory pathways.

Keywords

Nicotinic Acetylcholine Receptor Choline Acetyltransferase Optic Lobe nAChR Subtype Neuronal Nicotinic Acetylcholine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sattelle DB, David JA, Harrow ID et al. Action of alpha-bungarotoxin on identified insect central neurones. In: Sattelle DB, Hall LM, Hildebrand JG, eds. Receptors for Neurotransmitters, Hormones and Pheromones in Insects. Amsterdam: Elsevier/North Holland, Biomedical Press 1980:125–139.Google Scholar
  2. 2.
    Breer H, Sattelle DB. Molecular properties and functions of insect acetylcholine receptors. J Insect Physiol 1987; 33:771–790.CrossRefGoogle Scholar
  3. 3.
    Sattelle DB, Harrow ID, Hue B et al.α-bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana. J Exp Biol 1983; 107:473–489.Google Scholar
  4. 4.
    Benson JA. Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J Exp Biol 1992; 170:203–233.Google Scholar
  5. 5.
    Trimmer BA. Current excitement from insect muscarinic receptors. Trends Neurosci 1995; 18(2):104–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Hue B, Lapied B, Malecot CO. Do presynaptic muscarinic receptors regulate acetylcholine release in the central nervous system of the cockroach Periplaneta americana? J Exp Biol 1989; 142:447–451.Google Scholar
  7. 7.
    Le Corronc H, Lapied B, Hue B. M2-like presynaptic receptors modulate acetylcholine release in the cockroach (Periplaneta americana) central nervous system. J Insect Physiol 1991; 37:647–652.CrossRefGoogle Scholar
  8. 8.
    Matsuda K, Buckingham SD, Kleier D et al. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2001; 22(11):573–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Honda H, Tomizawa M, Casida JE. Insect nicotinic acetylcholine receptors: Neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J Agric Food Chem 2006; 54(9):3365–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Ihara M, Brown LA, Ishida C et al. Actions of imidacloprid, clothianidin and related neonicotinoids on nicotinic acetylcholine receptors of american cockroach neurons and their relationships with insecticidal potency. J Pestic Sci 2006; 31(1):35–40.CrossRefGoogle Scholar
  11. 11.
    Breer H, Kleene R, Hinz G. Molecular forms and subunit structure of the acetylcholine rececptor in the central nervous of insects. J Neurosci 1985; 5:3386–3392.PubMedGoogle Scholar
  12. 12.
    Geffard M, Villemaringe J, Heinrich-Rock AM et al. Anti-acetylcholine antibodies and first immunocytochemical application in insect brain. Neurosci Lett 1985; 57:1–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Lutz EM, N.M. T. Immunohistochemical localization of choline acetyltransferase in the central nervous system of the locust. Brain Res 1987; 407:173–179.PubMedCrossRefGoogle Scholar
  14. 14.
    Kreissl S, Bicker G. Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 1989; 286(1):71–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Scheidler A, Kaulen P, Bruning G et al. Quantitative autoradiographic localization of [125I]alpha-bungarotoxin binding sites in the honeybee brain. Brain Res 1990; 534(1–2): 332–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Greenspan RJ. Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J Comp Physiol 1980; 137:83–92.CrossRefGoogle Scholar
  17. 17.
    Thany SH, Lenaers G, Raymond-Delpech V et al. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2007; 28(1):14–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Dudai Y, Amsterdam A. Nicotinic receptors in the brain of drosophila melanogaster demonstrated by autoradiography with [125I]alpha-bungarotoxin. Brain Res 1977; 130(3):551–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Dudai Y. Properties of an α-bungarotoxin-binding cholinergic nicotinic receptor from Drosophila melanogaster. Biochim Biophys Acta 1978; 539:505–517.PubMedGoogle Scholar
  20. 20.
    Lummis SC, Sattelle DB. Binding of n-[propyonyl-3H] propionylated α-bungarotoxin and l-[benzilic-4,4-3H] quinuclidinyl benzilate to cns extracts of the cockroach Periplaneta americana. Comp Biochem Physiol C Comp Pharmacol 1985; 80:75–83.CrossRefGoogle Scholar
  21. 21.
    Buckingham S, Lapied B, Corronc H et al. Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 1997; 200(Pt 21):2685–92.PubMedGoogle Scholar
  22. 22.
    Hue B, Callec JJ. Electrophysiology and pharmacology of synaptic transmission in the central nervous system of the cockroach. In: Huber I, Masler EP, Rao BR, eds. Cockroaches as Models for Neurobiology: Applications in Biomedical Researches. Boca Raton: CRC Press, 1990:149–167.Google Scholar
  23. 23.
    Ngiam TL, GO ML. The structure of the acetylcholinesterase active center and the mode of acetylcholine/ acetylcholinesterase interaction—a theoretical study. Asia Pacific J Pharmacol 1987; 2:33–41.Google Scholar
  24. 24.
    Toutant JP. Insect acetylcholinesterase: Catalytic properties, tissue distribution and molecular forms. Prog Neurobiol 1989; 32(5):423–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Hellenbrand K, Krupka RM. Kinetic studies on the mechanism of insect acetylcholinesterase. Biochem 1970; 9:4665–4672.CrossRefGoogle Scholar
  26. 26.
    Toutant JP, Massoulié J, Bon S. Polymorphism of pseudocholinesterase in torpedo marmorata tissues: Comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase. J Neurochem 1985; 44:580–592.PubMedCrossRefGoogle Scholar
  27. 27.
    Gnagey AL, Forte M, Rosenberry TL. Isolation and characterization of acetylcholinesterase from drosophila. J Biol Chem 1987; 262:13290–13298.PubMedGoogle Scholar
  28. 28.
    Massoulié J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann Rev Neurosci 1982; 5:57–106.PubMedCrossRefGoogle Scholar
  29. 29.
    Arpagaus M, Fournier D, Toutant JP. Analysis of acetylcholinesterase molecular forms during the development of Drosophila melanogaster. Evidence for the existence of an amphiphilic monomer. Insect Biochem 1988; 18(6):539–549.CrossRefGoogle Scholar
  30. 30.
    Fournier D, Cuany A, Bride JM et al. Molecular polymorphism of head acetylcholinesterase from adult houseflies (Musca domestica l.). J Neurochem 1987; 49:1455–1461.PubMedCrossRefGoogle Scholar
  31. 31.
    Toutant JP, Arpagaus M, Fournier D. Native molecular forms of head acetylcholinesterase from adult Drosophila melanogaster: Quaternary structure and hydrophobic character. J Neurochem 1988; 50:209–218.PubMedCrossRefGoogle Scholar
  32. 32.
    Pitman RM. Nervous system. In: Kerkut G, Gilbert LI, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Oxford: Pergamon Press, 1985:5–54.Google Scholar
  33. 33.
    Melanson SW, Chang-Hyong Y, Pezzementi ML et al. Characterization of acetylcholinesterase activity from Drosophila melanogaster. Comp Biochem Physiol C Comp Pharmacol 1985; 81(1):87–96.CrossRefGoogle Scholar
  34. 34.
    Sattelle DB, Ho YW, Crawford GD et al. Immunocytochemical staining of central neurones in Periplaneta americana using monoclonal antibodies to cholineacetyltransferase. Tissue Cell 1986; 18:51–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Pahud G, Salem N, van de Goor J et al. Study of subcellular localization of membrane-bound choline acetyltransferase in drosophila central nervous system and its association with membranes. Eur J Neurosci 1998; 10(5):1644–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Slemmon JR. Sequence analysis of a proteolyzed site in drosophila choline acetyltransferase. J Neurochem 1989; 52(6):1898–904.PubMedCrossRefGoogle Scholar
  37. 37.
    Sugihara H, Andrisani V, Salvaterra PM. Drosophila choline acetyltransferase uses a non-aug initiation codon and full length rna is inefficiently translated. J Biol Chem 1990; 265(35):21714–9.PubMedGoogle Scholar
  38. 38.
    Gorczyca MG, Hall JC. Immunohistochemical localization of choline acetyltransferase during development and in chats mutants of drosophila melanogaster. J Neurosci 1987; 7(5):1361–9.PubMedGoogle Scholar
  39. 39.
    Yasuyama K, Salvaterra PM. Localization of choline acetyltransferase-expressing neurons in drosophila nervous system. Microsc Res Tech 1999; 45(2):65–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Leitinger G, Simmons PJ. Cytochemical evidence that acetylcholine is a neurotransmitter of neurons that make excitatory and inhibitory outputs in the locust ocellar visual system. J Comp Neurol 2000; 416:345–355.PubMedCrossRefGoogle Scholar
  41. 41.
    Rind FC, Leitinger G. Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine. J Comp Neurol 2000; 423(3):389–401.PubMedCrossRefGoogle Scholar
  42. 42.
    Python F, Stocker RF. Immunoreactivity against choline acetyltransferase, gamma-aminobutyric acid, histamine, octopamine and serotonin in the larval chemosensory system of Drosophila melanogaster. J Comp Neurol 2002; 453(2):157–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Clark J, Meisner S, Torkkeli PH. Immunocytochemical localization of choline acetyltransferase and muscarinic ach receptors in the antenna during development of the sphinx moth Manduca sexta. Cell Tissue Res 2005; 320(1):163–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Torkkeli PH, Widmer A, Meisner S. Expression of muscarinic acetylcholine receptors and choline acetyltransferase enzyme in cultured antennal sensory neurons and nonneural cells of the developing moth Manduca sexta. J Neurobiol 2005; 62(3):316–29.PubMedCrossRefGoogle Scholar
  45. 45.
    Lutz EM, Lloyd SJ, Tyrer NM. Purification of choline acetyltransferase from the locust Schistocerca gregaria and production of serum antibodies to this enzyme. J Neurochem 1988; 50(1):82–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Fabian R, Seyfarth EA. Acetylcholine and histamine are transmitter candidates in identifiable mechanosensitive neurons of the spider Cupiennius salei: An immunocytochemical study. Cell Tissue Res 1997; 287(2):413–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Tucker ES, Tolbert LP. Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth Manduca sexta. Dev Biol 2003; 260(1):9–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Breer H. Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria. Neurochem Int 1981; 3:43–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Breer H, Kleene R, Behnke D. Isolation of a putative nicotinic acetylcholine receptor from the central nervous system of Locusta migratoria. Neurosci Lett 1984; 46:323–328.PubMedCrossRefGoogle Scholar
  50. 50.
    Sattelle DB, Breer H. Purification by affinity-chromatography of a nicotinic acetylcholine receptor from the cns of the cockroach Periplaneta americana. Comp Biochem Physiol C Comp Pharmacol 1985; 82(2):349–352.CrossRefGoogle Scholar
  51. 51.
    Schmidt-Nielsen BK, Gepner JI, Teng NNH et al. Characterization of an alpha-bungarotoxin binding component from Drosophila melanogaster. J Neurochem 1977; 29:1013–1029.PubMedCrossRefGoogle Scholar
  52. 52.
    Rudoff E. Acectylcholine receptors in the central nervous system of Drosophila melanogaster. Exp Cell Res 1978; 111:185–190.CrossRefGoogle Scholar
  53. 53.
    Hildebrand JG, Hall LM, Osmond BC. Distribution of binding sites for 125I-labeled alpha-bungarotoxin in normal and deafferented antennal lobes of Manduca sexta. Proc Natl Acad Sci USA 1979; 76(1):499–503.PubMedCrossRefGoogle Scholar
  54. 54.
    Orr GL, Orr N, Hollingworth RM. Localization and pharmacological characterization of nicotinic-cholinergic binding sites in cockroach brain using alpha-and neuronal bungarotoxin. Insect Biochem 1990; 20:557–566.CrossRefGoogle Scholar
  55. 55.
    Meyer MR, Reddy GR. Muscarinic and nicotinic cholinergic binding sites in the terminal abdominal ganglion of the cricket (Acheta domesticus). J Neurochem 1985; 45(4):1101–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Lind RJ, Clough MS, Earley FGP et al. Characterisation of multiple alpha-bungarotoxin binding sites in the aphid Myzus persicae (hemiptera: Aphididae). Insect Biochem Mol Biol 1999; 29:979–988.CrossRefGoogle Scholar
  57. 57.
    Davies AR, Hardick DJ, Blagbrough IS et al. Characterisation of the binding of [3H]methyllycaconitine: A new radioligand for labelling alpha 7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 1999; 38(5):679–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Lind RJ, Hardick DJ, Blagbrough IS et al. [3H]-methyllycaconitine: A high affinity radioligand that labels invertebrate nicotinic acetylcholine receptors. Insect Biochem Mol Biol 2001; 31(6–7):533–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Lind RJ, Clough MS, Reynolds SE et al. [3H]imidacloprid labels high-and low-affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (hemiptera: Aphididae). Pest Biochem Physiol 1998; 62:3–14.CrossRefGoogle Scholar
  60. 60.
    Grauso M, Reenan RA, Culetto E et al. Novel putative nicotinic acetylcholine receptor subunit genes, dalpha5, dalpha6 and dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 2002; 160(4):1519–33.PubMedGoogle Scholar
  61. 61.
    Jones AK, Marshall J, Blake AD et al. Sgbeta1, a novel locust (Schistocerca gregaria) non-alpha nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster dbeta1 subunit. Invert Neurosci 2005; 5(3–4):147–155.PubMedCrossRefGoogle Scholar
  62. 62.
    Jones AK, Grauso M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 2005; 85(2):176–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Jones AK, Raymond-Delpech V, Thany SH et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 2006; 16(11):1422–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 2007; 8:327.PubMedCrossRefGoogle Scholar
  65. 65.
    Chamaon K, Smalla KH, Thomas U et al. Nicotinic acetylcholine receptors of drosophila: Three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem 2002; 80(1):149–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Chamaon K, Schulz R, Smalla KH et al. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: The alpha-subunit dalpha3 and the beta-type subunit ard co-assemble within the same receptor complex. FEBS Lett 2000; 482(3):189–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Fayyazuddin A, Zaheer MA, Hiesinger PR et al. The nicotinic acetylcholine receptor dalpha7 is required for an escape behavior in drosophila. PLoS Biol 2006; 4(3):e63.PubMedCrossRefGoogle Scholar
  68. 68.
    Hess N, Merz B, Gundelfinger ED. Acetylcholine receptors of the drosophila brain: A 900 bp promoter fragment contains the essential information for specific expression of the ard gene in vivo. FEBS Lett 1994; 346(2–3):135–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit mdalpha6 from Musca domestica is diversified via posttranscriptional modification. Insect Mol Biol 2007; 16(3):325–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Hermsen B, Stetzer E, Thees R et al. Neuronal nicotinic receptors in the locust locusta migratoria. Cloning and expression. J Biol Chem 1998; 273(29):18394–404.PubMedCrossRefGoogle Scholar
  71. 71.
    Thany SH, Lenaers G, Crozatier M et al. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 2003; 12(3):255–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Thany SH, Crozatier M, Raymond-Delpech V et al. Apisalpha2, apisalpha7–1 and apisalpha7–2: Three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 2005; 344:125–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Jonas P, Baumann A, Merz B et al. Structure and developmental expression of the d alpha 2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett 1990; 269(1):264–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Wadsworth SC, Rosenthal LS, Kammermeyer KL et al. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system. Mol Cell Biol 1988; 8(2):778–85.PubMedGoogle Scholar
  75. 75.
    Hermans-Borgmeyer I, Hoffmeister S, Sawruk E et al. Neuronal acetylcholine receptors in drosophila: Mature and immature transcripts of the ard gene in the devevloping central nervous system. Neuron 1989; 2:1147–1156.PubMedCrossRefGoogle Scholar
  76. 76.
    Gundelfinger ED, Hess N. Nicotinic acetylcholine receptors of the central nervous system of drosophila. Biochim Biophys Acta 1992; 1137(3):299–308.PubMedCrossRefGoogle Scholar
  77. 77.
    Sawruk E, Udri C, Betz H et al. Sbd, a novel structural subunit of the drosophila nicotinic acetylcholine receptor, shares its genomic localization with two alpha-subunits. FEBS Lett 1990; 273(1–2):177–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Fuhrman B, Partoush A, Aviram M. Acectylcholine esterase protects LDL against oxidation. Biochem Biophys Res Com 2004; 322:974–978.PubMedCrossRefGoogle Scholar
  79. 79.
    Inestrosa NC, Alvarez A, Pérez CA et al. Acetylcholinesterase accelerates assembly of amyloid-betapeptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16(4):881–891.PubMedCrossRefGoogle Scholar
  80. 80.
    Massoulié J, Millard CB. Cholinesterases and the basal lamina at vertebrate neuromuscular junctions. Curr Opin Pharmacol 2009; 9(3):316–325.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Steeve Hervé Thany
    • 1
  • Hélène Tricoire-Leignel
    • 1
  • Bruno Lapied
    • 1
  1. 1.Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC INRA 2023, IFR 149 QUASAVUniversité d’Angers, UFR de SciencesAngersFrance

Personalised recommendations