Advertisement

Delay-Dependent Switched Control

  • Magdi S. Mahmoud
Chapter

Abstract

In this chapter, we continue the discussion about delay-dependent switched feedback techniques and compare among their merits, features, and computational requirements. We pay equal attention to both continuous-time and discrete-time systems.

Keywords

Linear Matrix Inequality Static Output Feedback Switching Rule Dynamic Output Feedback Arbitrary Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 225.
    Mahmoud, M. S., Delay-Dependent \(\mathcal{H}_{2}\) Filtering of a Class of Switched Discrete-Time State-Delay Systems, J. Signal Process., vol. 88, no. 11, 2008, pp. 2709–2719.MATHCrossRefGoogle Scholar
  2. 179.
    Lee, C. S. and G. Leitmann, Continuous Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Linear Delay Systems: An Application to River Pollution Control, Comput. Math. Model., vol. 16, 1988, pp. 929–938.MathSciNetMATHGoogle Scholar
  3. 237.
    Mahmoud, M. S. and Abdulla Ismail, New Results on Delay-Dependent Control of Time-Delay Systems, IEEE Trans. Automat. Contr., vol. 50, 2005, pp. 95–100.CrossRefGoogle Scholar
  4. 238.
    Mahmoud, M. S. and Abdulla Ismail, Delay-Dependent Robust Stability and Stabilization of Neutral Systems, J. Appl. Math. Sci., vol. 1, 2007, pp. 491–505.MATHGoogle Scholar
  5. 138.
    Hetel, L., J. Daafouz and C. Iung, Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays, IEEE Trans. Automat. Contr., vol. 51, no. 10, 2006, pp. 1668–1674.MathSciNetCrossRefGoogle Scholar
  6. 224.
    Mahmoud, M. S., Linear Hybrid Systems with Time-Varying Delays: \(\mathcal{H}_{\infty}\) Stabilization Schemes, Int. J. Syst. Contr. Commun., vol. 1, no. 2, 2008, pp. 147–169.CrossRefGoogle Scholar
  7. 25.
    Boukas, E. K. and M. S. Mahmoud, A Practical Approach to Control of Nonlinear Discrete-Time State-Delay Systems, Optimal Contr. Appl. Methods, vol. 10, 2007, pp. 1–21.MathSciNetGoogle Scholar
  8. 273.
    Mahmoud, M. S., E. K. Boukas and P. Shi, Resilient Feedback Stabilization of Discrete-Time Systems with Delays, IMA J. Math. Contr. Inf., vol. 24, no. 4, 2007, pp. 1–16.Google Scholar
  9. 333.
    Pettersson, S. and B. Lennartson, Hybrid System Stability and Robustness Verification Using Linear Matrix Inequalities, Int. J. Contr., vol. 75, 2002, pp. 1335–1355.MathSciNetMATHCrossRefGoogle Scholar
  10. 88.
    Geromel, J. C. and P. Colaneri, Stability and Stabilization of Continuous-Time Switched Linear Systems, SIAM J. Contr. Optim., vol. 45, no. 5, 2006, pp. 1915–1930.MathSciNetMATHCrossRefGoogle Scholar
  11. 170.
    Kim, D. K., P. G. Park and J. W. Ko, Output Feedback \(\mathcal{H}_{\infty}\) Control of Systems Over Communication Networks using a Deterministic Switching Systems Approach, Automatica, vol. 40, no. 3, 2004, pp. 1205–1212.MathSciNetMATHCrossRefGoogle Scholar
  12. 161.
    Khargonekar P. P. and M. A. Rotea, Mixed \(\mathcal{H}_{2}/\mathcal{H}_{\infty}\) Control: A Convex Optimization Approach, IEEE Trans. Automat. Contr., vol. 36, 1991, pp. 824–837.MathSciNetMATHCrossRefGoogle Scholar
  13. 279.
    Mahmoud, M. S., M. N. Nounou and H. N. Nounou, Analysis and Synthesis of Uncertain Switched Discrete-Time Systems, IMA J. Math. Contr. Inf., vol. 24, 2007, pp. 245–257.MathSciNetMATHCrossRefGoogle Scholar
  14. 213.
    Mahmoud, M. S., Robust \(\mathcal{H}_{\infty}\) Control of Discrete Systems with Uncertain Parameters and Unknown Delays, Automatica, vol. 36, 2000, pp. 627–635.MATHCrossRefGoogle Scholar
  15. 28.
    Branicky, M., Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems, IEEE Trans. Automat. Contr., vol. 43, no. 4, 1998, pp. 475–582.MathSciNetMATHCrossRefGoogle Scholar
  16. 193.
    Liberzon, D. and A. Morse, Basic Problems in Stability and Design of Switched Systems, IEEE Contr. Syst. Mag., vol. 19, no. 5, 1999, pp. 59–70.CrossRefGoogle Scholar
  17. 342.
    Savkin, A. V., E. Skafidas and R. J. Evans, Robust Output Feedback Stabilizability via Controller Switching, Automatica, vol. 35, 1999, pp. 69–74.MathSciNetMATHCrossRefGoogle Scholar
  18. 425.
    Zhai, G. S., Y. Sun, X. K. Chen and N. M. Anthony, Stability and \(\mathcal{L}_{2}\) Gain Analysis for Switched Symmetric Systems with Time Delay, Proceedings of the American Control Conference, Portland, OR, 2003, pp. 2682–2687.Google Scholar
  19. 252.
    Mahmoud, M. S. and H. E. Emara-Shabaik, New \(\mathcal{H}_{2}\) Filter for Uncertain Singular Systems using Strict LMIs, J. Circuits, Syst. Signal Process., vol. 28, no. 5, 2009, pp. 665–677.MathSciNetMATHCrossRefGoogle Scholar
  20. 217.
    Mahmoud, M. S., Robust Stability and \(\mathcal{H}_{\infty}\) Estimation for Uncertain Discrete Systems with State-Delay, J. Math. Probl. Eng., vol. 7, no. 5, 2001, pp. 393–412.MATHCrossRefGoogle Scholar
  21. 240.
    Mahmoud, M. S. and N. B. Almutairi, Improved Resilient Filtering for Linear Discrete-Time Systems, J. Math Contr. Sci. Appl., vol. 1, no. 2, 2007, pp. 351–364.Google Scholar
  22. 177.
    Kwon, W. H., J. W. Kang, Y. S. Lee and Y. S. Moon, A Simple Receding Horizon Control for State Delayed Systems and its Stability Criterion, J. Process. Contr., vol. 13, 2003, pp. 539–551.CrossRefGoogle Scholar
  23. 437.
    Zhang, L., P. Shi, E. K. Boukas and C.Wang, \(\mathcal{H}_{\infty}\) Control of Switched Linear Discrete-Time Systems with Polytopic Uncertainties, Optimal Contr. Appl. Methods, vol. 27, 2006, pp. 273–291.MathSciNetCrossRefGoogle Scholar
  24. 26.
    Saif, A. W., M. S. Mahmoud and Y. Shi, A Parameterized Delay-Dependent Approach to Control of Uncertain Switched Discrete-Time Delay Systems, Int. J. Innovative Comput. Inf. Contr., vol. 5, no. 10, 2009, pp. 1071–1082.Google Scholar
  25. 74.
    Gahinet, P., A. Nemirovski, A. L. Laub and M. Chilali, LMI Control Toolbox, The Math Works, Boston, MA, 1995.Google Scholar
  26. 41.
    Cuzzola, F. A. and M. Morari, A Generalized Approach for Analysis and Control of Discrete-Time Piecewise Affine and Hybrid Systems, in Hybrid Systems: Computation and Control, Di Benedetto, M. D., San Giovanni-Vincentelli, A. L. (Editors), Springer, Berlin, 2001, pp. 135–164.Google Scholar
  27. 274.
    Mahmoud, M. S., E. K. Boukas and P. Shi, Resilient Feedback Stabilization of Discrete-Time Systems with Delays, IMA J. Math. Contr. Inf., vol. 25, no. 2, 2008, pp. 141–156.MathSciNetMATHCrossRefGoogle Scholar
  28. 76.
    Gao, F., S. Zhong and X. Gao, Delay-Dependent Stability of a Type of Linear Switching Systems with Discrete and Distributed Time-Delays, Appl. Math Comput., vol. 196, 2008, pp. 24–39.MathSciNetMATHCrossRefGoogle Scholar
  29. 192.
    Liberzon, D., Switching in Systems and Control, Birkhauser, Boston, MA, 2003.MATHCrossRefGoogle Scholar
  30. 223.
    Mahmoud, M. S., Resilient \(\mathcal{L}_{2}/\mathcal{L}_{\infty}\) Filtering of Polytopic Systems with State-Delays, Proc. IET Contr. Theory Appl., vol. 1, 2007, pp. 141–154.CrossRefGoogle Scholar
  31. 50.
    Du, D., B. Jiang and S. Zhou, Delay-Dependent Robust Stabilization of Uncertain Discrete-Time Switched Linear Systems with Time-Varying State Delays, Int. J. Syst. Sci., vol. 39, 2008, pp. 305–313.MathSciNetMATHCrossRefGoogle Scholar
  32. 89.
    Geromel, J. C. and G. S. Deaecto, Switched State Feedback Control for Continuous-Time Uncertain Systems, Automatica, vol. 45, 2009, pp. 593–597.MathSciNetMATHCrossRefGoogle Scholar
  33. 27.
    Boyd, S., L. El. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, {SIAM Stud. Appl. Math}., Philadelphia, 1994.CrossRefGoogle Scholar
  34. 160.
    Khalil, H. K., Nonlinear Systems, 3rd edn., Prentice Hall, Upper Saddle River, NJ, 2002.MATHGoogle Scholar
  35. 196.
    Lin, H. and P. J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Automat. Contr., vol. 54, 2009, pp. 308–322.MathSciNetCrossRefGoogle Scholar
  36. 424.
    Zhai, G., H. Lin and P. J. Antsaklis, Quadratic Stabilizability of Switched Linear Systems with Polytopic Uncertainties, Int. J. Contr., vol. 76, 2003, pp. 747–753.MathSciNetMATHCrossRefGoogle Scholar
  37. 438.
    Zhang, L., P. Shi, E.-K. Boukas and C. Wang, Robust \(\ell_{2}-\ell_{\infty}\) Filtering for Switched Linear Discrete Time-Delay Systems with Polytopic Uncertainties, IET Contr. Theory Appl., vol. 1, no. 3, 2007, pp. 722–730.MathSciNetCrossRefGoogle Scholar
  38. 92.
    Geromel, J. C., P. Colaneri and P. Bolzern, Dynamic Output Feedback Control of Switched Linear Systems, IEEE Trans. Automat. Contr., vol. 53, no. 4, 2008, pp. 720–733.MathSciNetCrossRefGoogle Scholar
  39. 271.
    Mahmoud, M. S., F. M. AL-Sunni and Y. Shi, Mixed \(\mathcal{H}_{2}-\mathcal{H}_{\infty}\) Control of Uncertain Jumping Time-Delay Systems, J. Franklin Inst., vol. 345, no. 5, 2008, pp. 536–552.MathSciNetMATHCrossRefGoogle Scholar
  40. 285.
    Mahmoud, M. S., Y. Shi and F. M. AL-Sunni, Robust \(\mathcal{H}_{2}\) Output Feedback Control for a Class of Time-Delay Systems, Int. J. Innovative Comput. Inf. Contr., vol. 4, no. 12, 2008, pp. 3247–3257.Google Scholar
  41. 130.
    Hein, Y., Q. P. Ha and V. N. Phat, Stability and Stabilization of Switched Linear Dynamic Systems with Time Delay and Uncertainties, Appl. Math Comput., vol. 210, no. 1, 2009, pp. 223–231.MathSciNetCrossRefGoogle Scholar
  42. 298.
    Montagner, V. F., V. J. S. Leite, S. Tarbouriech and P. L. D. Peres, Stability and Stabilizability of Discrete-Time Switched Linear Systems with State-Delay, Proceedings of American Control Conference, Portland, OR, 2005, pp. 3806–3811.Google Scholar
  43. 159.
    Kapila, V. and W. M. Haddad, Memoryless \(\mathcal{H}_{\infty}\) Controllers for Discrete-Time Systems with Time-Delay, Automatica, vol. 34, no. 5, 1998, pp. 1141–1144.MATHCrossRefGoogle Scholar
  44. 239.
    Mahmoud, M. S. and Abdulla Ismail, Resilient Control of Nonlinear Discrete-Time State-Delay Systems, Appl. Math Comput., vol. 206, no. 2, 2008, pp. 561–569.MathSciNetMATHCrossRefGoogle Scholar
  45. 278.
    Mahmoud, M. S., M. N. Nounou and H. N. Nounou, Analysis and Synthesis of Uncertain Switching Discrete-Time Systems, IMA J. Math. Contr. Inf., vol. 23, no. 6, 2006, pp. 245–257.CrossRefGoogle Scholar
  46. 23.
    . Boukas, E. K., Discrete-Time Systems with Time-Varying Time Delay: Stability and Stabilizability, Math Probl. Eng., vol. 2006, Article ID 42489, 2006.Google Scholar
  47. 324.
    Park, P. G. and J.W. Ko, Stability and Robust Stability for Systems with a Time-Varying Delay, Automatica, vol. 43, 2007, pp. 1855–1858.MathSciNetMATHCrossRefGoogle Scholar
  48. 169.
    Kim, S., S. A. Campbell and X. Z. Liu, Stability of a Class of Linear Switching Systems with Time-Delay, IEEE Trans. Circuits Syst., vol. 53, no. 2, 2006, pp. 384–393.MathSciNetCrossRefGoogle Scholar
  49. 432.
    Zhang, L., P. Shi and E. K. Boukas, \(\mathcal{H}_{\infty}\) Output-Feedback Control for Switched Linear Discrete-Time Systems with Time-Varying Delays, Int. J. Contr., vol. 80, 2007, pp. 1354–1365.MATHCrossRefGoogle Scholar
  50. 216.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Marcel-Dekker, New-York, NY, 2000.MATHGoogle Scholar
  51. 255.
    Mahmoud, M. S. and S. J. Saleh, Regulation of Water Quality Standards in Streams by Decentralized Control, Int. J. Contr., vol. 41, 1985, pp. 525–540.MathSciNetMATHCrossRefGoogle Scholar
  52. 90.
    Geromel, J. C. and P. Colaneri, Stability and Stabilization of Discrete-Time Switched Linear Systems, Int. J. Contr., vol. 79, no. 7, 2006, pp. 719–728.MathSciNetMATHCrossRefGoogle Scholar
  53. 275.
    Mahmoud, M. S., E. K. Boukas and P. Shi, Robust Adaptive Control of Uncertain Discrete-Time State-Delay Systems, Comput. Math Appl., vol. 55, no. 11, 2008, pp. 2887–2902.MathSciNetMATHCrossRefGoogle Scholar
  54. 372.
    Sun, X. M., W. Wang, G. P. Liu and J. Zhao, Stability Analysis for Linear Switched Systems with Time-Varying Delays, IEEE Trans. Syst. Man Cybern.-Part B, vol. 38, 2008, pp. 528–533.Google Scholar
  55. 396.
    Xie, G. M. and L. Wang, Stability and Stabilization of Switched Linear Systems with State Delay, Proceedings of the 16th Mathematical Theory of Networks and Systems Conference, Leuven, Belgium, 2004.Google Scholar
  56. 370.
    Sun, X., J. Zhao and D. J. Hill, Stability and \(\mathcal{L}_{2}\) Gain Analysis for Switched Delay Systems: A Delay-Dependent Method, Automatica, vol. 42, 2006, pp. 1769–1774.MathSciNetMATHCrossRefGoogle Scholar
  57. 297.
    Montagner, V. F., V. J. S. Leite, R. C. L. F. Oliveira and P. L. D. Peres, State-Feedback Control of Switched Linear Systems: An LMI Approach, J. Comput. Appl. Math., vol. 194, 2006, pp. 192–206.MathSciNetMATHCrossRefGoogle Scholar
  58. 42.
    Daafouz, J., P. Riedinger and C. Lung, Stability Analysis and Control Synthesis for Switched Systems: A Hybrid Lyapunov Function Approach, IEEE Trans. Automat. Contr., vol. 47, 2002, pp. 1883–1887.CrossRefGoogle Scholar
  59. 366.
    Sun, Z. and S. S. Ge, Switched Linear Systems, Springer, London, 2005.MATHGoogle Scholar
  60. 66.
    Fridman E. and U. Shaked, Delay-Dependent Stability and \(\mathcal{H}_{\infty}\) Control: Constant and Time-Varying Delays, Int. J. Contr., vol. 76, 2003, pp. 48–60.MathSciNetMATHCrossRefGoogle Scholar
  61. 56.
    El-Fara, N. H., P. Mhaskar and P. D. Christofides, Output Feedback Control of Switched Nonlinear Systems using Multiple Lyapunov Functions, Syst. Contr. Lett., vol. 54, 2005, pp. 1163–1162.CrossRefGoogle Scholar
  62. 280.
    Mahmoud, M. S., A. W. Saif and P. Shi, Stabilization of Linear Switched Delay Systems: \(\mathcal{H}_{2}\) and \(\mathcal{H}_{\infty}\) Methods, J. Optim. Theory Appl., vol. 142, no. 3, 2009, pp. 583–607.MathSciNetMATHCrossRefGoogle Scholar
  63. 389.
    Williams, S. M. and R. G. Hoft, Adaptive Frequency Domain Control of PPM Switched Power Line Conditioner, IEEE Trans. Power Electron., vol. 6, 1991, pp. 665–670.CrossRefGoogle Scholar
  64. 393.
    Wu, L., P. Shi, C. Wang and H. Gao, Delay-Dependent Robust \(\mathcal{H}_{\infty}\) and \(\mathcal{L}_{2}-\mathcal{H}_{\infty}\) Filtering for LPV Systems with Both Discrete and Distributed Delays, IEE Proc. Contr. Theory Appl., vol. 153, 2006, pp. 483–492.MathSciNetCrossRefGoogle Scholar
  65. 168.
    Kim, J. H., Delay and its Time-Derivative Dependent Robust Stability of Time-Delayed Linear Systems with Uncertainty, IEEE Trans. Automat. Contr., vol. 46, no. 5, 2001, pp. 789–792.MATHCrossRefGoogle Scholar
  66. 150.
    Ji, Z., L. Wang and G. Xie, Quadratic Stabilization of Switched Systems, Int. J. Syst. Sci., vol. 36, no. 6, 2005, pp. 395–404.MathSciNetMATHCrossRefGoogle Scholar
  67. 345.
    Shi, P., E. K. Boukas and R. K. Agarwal, Optimal Guaranteed Cost Control of Uncertain Discrete Time-Delay Systems, J. Comput. Appl. Math., vol. 157, 2003, pp. 435–451.MathSciNetMATHCrossRefGoogle Scholar
  68. 270.
    Mahmoud, M. S., F. M. AL-Sunni and Y. Shi, Dissipativity Results for Linear Singular Time-Delay Systems, Int. J. Innovative Comput. Inf. Contr., vol. 4, no. 11, 2008, pp. 2833–2845.Google Scholar
  69. 174.
    Koutsoukos, X. D. and P. J. Antsaklis, Design of Stabilizing Switching Control Laws for Discrete- and Continuous-Time Linear Systems Using Piecewise-Linear Lyapunov Functions, Int. J. Contr., vol. 75, 2002, pp. 932–945.MathSciNetMATHCrossRefGoogle Scholar
  70. 31.
    Cao, Y. Y. and P. M. Frank, Analysis and Synthesis of Nonlinear Time-Delay Systems via Fuzzy Control Approach, IEEE Trans. Fuzzy Syst., vol. 8, no. 2, 2000, pp. 200–211.CrossRefGoogle Scholar
  71. 368.
    Sun, Y. G., L. Wang and G. Xie, Delay-Dependent Robust Stability and \(\mathcal{H}_{\infty}\) Control for Uncertain Discrete-Time Switched Systems with Mode-Dependent Time-Delays, Appl. Math. Comput., vol. 180, 2006, pp. 428–435.MathSciNetMATHCrossRefGoogle Scholar
  72. 226.
    Mahmoud, M. S., Switched Discrete-Time with Time-Varying Delays: A Generalized \(\mathcal{H}_{2}\) Approach, Comput. Math Appl., vol. 57, no. 1, 2009, pp. 79–95.MathSciNetMATHCrossRefGoogle Scholar
  73. 439.
    Zhang, L., P. Shi, C. Wang and H. J. Gao, Robust \(\mathcal{H}_{\infty}\) Filtering for Switched Linear Discrete-Time Systems with Polytopic Uncertainties, Int. J. Adapt. Contr. Signal Process., vol. 20, 2006, pp. 291–304.MathSciNetMATHCrossRefGoogle Scholar
  74. 47.
    DeCarlo, R., M. Branicky, S. Pettersson and B. Lennartson, Perspectives and Results on the Stability and Stabilizability of Hybrid Systems, Proc. IEEE, vol. 88, 2000, pp. 1069–1082.CrossRefGoogle Scholar
  75. 149.
    Ji, Z. and L. Wang, Robust Stability and Stabilization of a Class of Nonlinear Switched Systems, Proceedings of the IASTED Conference on Modeling, Identification, and Control, Lanzarote, Spain, 2006, pp. 37–42.Google Scholar
  76. 241.
    Yuanqing Xia, Y., Zheng Zhu and M. S. Mahmoud, H2 control for Networked Control Systems with Markovian Data Losses and Delay, Proceedings of the 2nd International Symposium on Intelligent Informatics (ISII 2009), QinHuangDao, China, September 13–15, 2009, and in ICIC Express Letters (ICIC-EL).Google Scholar
  77. 272.
    Mahmoud, M. S., F. M. AL-Sunni and Y. Shi, Switched Discrete-Time Delay Systems: Delay-Dependent Analysis and Synthesis, J. Circuits, Syst. Signal Process., vol. 28, no. 5, 2009, pp. 735–761.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations