Three-Term Stabilization Schemes



It becomes increasingly evident that delays are the main causes of instability and poor performance in dynamical systems and frequently encountered in various engineering and physical systems. Stability analysis and control design of time-delay systems have attracted the attention of numerous investigators, see [24, 221, 237, 338] and their references. Some recent views pertaining to the problems of robust stability analysis and robust stabilization of uncertain time-delay systems have been reported, see [65, 181, 188, 238, 257] and their references.


Feedback Gain Quadratic Lyapunov Function Arbitrary Switching Algebraic Inequality Unknown Time Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.
    Assuncao, E., M. C. M. Teixeira, F. A. Faria, N. A. P. Da Silva and R. Cardim, Robust State-Derivative Feedback LMI-Based Designs for Multivariable Linear Systems, Int. J. Contr., vol. 80, 2007, pp. 1260–1270.MATHCrossRefGoogle Scholar
  2. 82.
    Gao, H. and T. Chen, New Results on Stability of Discrete-Time Systems with Time-Varying State-Delay, IEEE Trans. Automat. Contr., vol. 52, no. 2, 2007, pp. 328–334.MathSciNetCrossRefGoogle Scholar
  3. 179.
    Lee, C. S. and G. Leitmann, Continuous Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Linear Delay Systems: An Application to River Pollution Control, Comput. Math. Model., vol. 16, 1988, pp. 929–938.MathSciNetMATHGoogle Scholar
  4. 218.
    Mahmoud, M. S., Resilient Linear Filtering of Uncertain Systems, Automatica, vol. 40, no. 10, 2004, pp. 1797–1802.MathSciNetMATHCrossRefGoogle Scholar
  5. 237.
    Mahmoud, M. S. and Abdulla Ismail, New Results on Delay-Dependent Control of Time-Delay Systems, IEEE Trans. Automat. Contr., vol. 50, 2005, pp. 95–100.CrossRefGoogle Scholar
  6. 221.
    Mahmoud, M. S., Resilient Control of Uncertain Dynamical Systems, Springer, Berlin, 2004.MATHCrossRefGoogle Scholar
  7. 238.
    Mahmoud, M. S. and Abdulla Ismail, Delay-Dependent Robust Stability and Stabilization of Neutral Systems, J. Appl. Math. Sci., vol. 1, 2007, pp. 491–505.MATHGoogle Scholar
  8. 109.
    Hale, J., Theory of Functional Differential Equations, Springer, New York, NY, 1977.MATHCrossRefGoogle Scholar
  9. 198.
    Lin, Q., G. Wang and T. H. Lee, A Less Conservative Robust Stability Test for Linear Uncertain Time-Delay Systems, IEEE Trans. Automat. Contr., vol. 51, 2006, pp. 87–91.MathSciNetCrossRefGoogle Scholar
  10. 291.
    Meyer, C., S. Schroder and R. W. De Doncker, Solid-State Circuits Breakers and Current Limiters for Medium-Voltage Systems having Distributed Power Systems, IEEE Trans. Power Electron., vol. 19, 2004, pp. 1333–1340.CrossRefGoogle Scholar
  11. 337.
    Reithmeier, E. and G. Leitmann, Robust Vibration Control of Dynamical Systems Based on the Derivative of the State, Arc. Appl. Mech., vol. 72, 2003, pp. 856–864.MATHGoogle Scholar
  12. 186.
    Leith, D. J., R. N. Shorten, W. E. Leithead, O. Mason and P. Curran, Issues in the Design of Switched Linear Control Systems: A Benchmark Study, Int. J. Adaptive Contr. Signal Process., vol. 17, no. 2, 2003, pp. 103–118.MATHCrossRefGoogle Scholar
  13. 427.
    Zhai, G., Y. Sun, X. Chen and A. N. Michel, Stability and \(\mathcal{L}_{2}\) Gain Analysis for Switched Symmetric Systems with Time-Delay, Proceedings of the American Control Conference, Denver, CO, June 2003, pp. 4–6.Google Scholar
  14. 181.
    Lee, Y. S., Y. S. Moon, W. H. Kwon and P. G. Park, Delay-Dependent \(\mathcal{H}_{\infty}\) Control for Uncertain Systems with a State-Delay, Automatica, vol. 40, 2004, pp. 65–72.MathSciNetMATHCrossRefGoogle Scholar
  15. 216.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Marcel-Dekker, New-York, NY, 2000.MATHGoogle Scholar
  16. 22.
    Boukas, E. K., Static Output Feedback Control for Stochastic Hybrid Systems: LMI Approach, Automatica, vol. 42, 2006, pp. 183–188.MathSciNetMATHCrossRefGoogle Scholar
  17. 265.
    Mahmoud, M. S. and M. Zribi, \(\mathcal{H}_{\infty}\) Controllers for Time-Delay Systems using Linear Matrix Inequalities, J. Optim. Theory Appl., vol. 100, 1999, pp. 89–123.MathSciNetMATHCrossRefGoogle Scholar
  18. 170.
    Kim, D. K., P. G. Park and J. W. Ko, Output Feedback \(\mathcal{H}_{\infty}\) Control of Systems Over Communication Networks using a Deterministic Switching Systems Approach, Automatica, vol. 40, no. 3, 2004, pp. 1205–1212.MathSciNetMATHCrossRefGoogle Scholar
  19. 392.
    Wu, M., Y. He, J. H. She and G. P. Liu, Delay-Dependent Criteria for Robust Stability of Time-Varying Delay Systems, Automatica, vol. 40, no. 8, 2004, pp. 1435–1439.MathSciNetMATHCrossRefGoogle Scholar
  20. 386.
    Wang, Z. W., R. Zhou and C. Wen, Load-Frequency Controller Design for Power Systems, Proc. IEE Part C, vol. 140, 1993, pp. 11–17.Google Scholar
  21. 279.
    Mahmoud, M. S., M. N. Nounou and H. N. Nounou, Analysis and Synthesis of Uncertain Switched Discrete-Time Systems, IMA J. Math. Contr. Inf., vol. 24, 2007, pp. 245–257.MathSciNetMATHCrossRefGoogle Scholar
  22. 292.
    Michel, A., Recent Trends in the Stability Analysis of Hybrid Dynamical Systems, IEEE Trans. Circuits Syst.-Part I, 46, 1999, pp. 120–134.MATHCrossRefGoogle Scholar
  23. 28.
    Branicky, M., Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems, IEEE Trans. Automat. Contr., vol. 43, no. 4, 1998, pp. 475–582.MathSciNetMATHCrossRefGoogle Scholar
  24. 193.
    Liberzon, D. and A. Morse, Basic Problems in Stability and Design of Switched Systems, IEEE Contr. Syst. Mag., vol. 19, no. 5, 1999, pp. 59–70.CrossRefGoogle Scholar
  25. 338.
    Richard, J. P., Time-Delay Systems: An Overview of Some Recent Advances and Open Problems, Automatica, vol. 39, no. 10, 2003, pp. 1667–1694.MathSciNetMATHCrossRefGoogle Scholar
  26. 24.
    Boukas, E. K. and Z. K. Liu, Deterministic and Stochastic Time-delay Systems, Birkhauser, Boston, MA, 2002.MATHCrossRefGoogle Scholar
  27. 108.
    Hale, J. K. and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, Berlin, 1993.MATHGoogle Scholar
  28. 42.
    Daafouz, J., P. Riedinger and C. Lung, Stability Analysis and Control Synthesis for Switched Systems: A Hybrid Lyapunov Function Approach, IEEE Trans. Automat. Contr., vol. 47, 2002, pp. 1883–1887.CrossRefGoogle Scholar
  29. 214.
    Mahmoud, M. S., Delay-Dependent Robust Stability and Stabilization for Systems with Mismatched Uncertainties, IMA J. Math Contr. Inf., vol. 17, 2000, pp. 309–323.MATHCrossRefGoogle Scholar
  30. 66.
    Fridman E. and U. Shaked, Delay-Dependent Stability and \(\mathcal{H}_{\infty}\) Control: Constant and Time-Varying Delays, Int. J. Contr., vol. 76, 2003, pp. 48–60.MathSciNetMATHCrossRefGoogle Scholar
  31. 120.
    He, Y., M. Wu and Q. L. Han, Delay-Dependent \(\mathcal{H}_{\infty}\) Control of Linear Discrete-Time Systems with an Interval-Like Time-Varying Delay, Int. J. Syst. Sci., vol. 39, no. 3, 2008, pp. 427–436.MathSciNetMATHCrossRefGoogle Scholar
  32. 53.
    Duan, G. R. and X. Zhang, Regularizability of Linear Descriptor Systems via Output plus Partial State-Derivative Feedback, Asian J. Contr., vol. 5, 2003, pp. 334–340.CrossRefGoogle Scholar
  33. 56.
    El-Fara, N. H., P. Mhaskar and P. D. Christofides, Output Feedback Control of Switched Nonlinear Systems using Multiple Lyapunov Functions, Syst. Contr. Lett., vol. 54, 2005, pp. 1163–1162.CrossRefGoogle Scholar
  34. 1.
    Abdelaziz, T. H. S. and M. Valas’ek, Pole-Placement for SISO Linear Systems by State-Derivative Feedback, IEE Proc. Contr. Theory Appl., vol. 151, 2004, pp. 377–385.CrossRefGoogle Scholar
  35. 211.
    Mahmoud, M. S., Robust Stability and Stabilization of a Class of Uncertain Nonlinear Systems with Delays, J. Math. Probl. Eng., vol. 3, 1997, pp. 1–21.Google Scholar
  36. 41.
    Cuzzola, F. A. and M. Morari, A Generalized Approach for Analysis and Control of Discrete-Time Piecewise Affine and Hybrid Systems, in Hybrid Systems: Computation and Control, Di Benedetto, M. D., San Giovanni-Vincentelli, A. L. (Editors), Springer, Berlin, 2001, pp. 135–164.Google Scholar
  37. 426.
    Zhai, G., B. Shu, K. Yasuda and A. N. Michel, Disturbance Attenuation Properties of Time-Controlled Switched Systems, J. Franklin Inst., vol. 338, 2001, pp. 765–779.MathSciNetMATHCrossRefGoogle Scholar
  38. 192.
    Liberzon, D., Switching in Systems and Control, Birkhauser, Boston, MA, 2003.MATHCrossRefGoogle Scholar
  39. 301.
    Moon, Y. S., P. Park, W. H. Kwon and Y. S. Lee, Delay-Dependent Robust Stabilization of Uncertain State-Delayed Systems, Int. J. Contr., vol. 74, no. 14, 2001, pp. 1447–1455.MathSciNetMATHCrossRefGoogle Scholar
  40. 436.
    Zhang, L., P. Shi, E. Boukas and C. Wang, \(\mathcal{H}_{\infty}\) Control of Switched Linear Discrete-Time Systems with Polytopic Uncertainties, Optimal Contr. Appl. Methods, vol. 27, 2006, pp. 273–291.MathSciNetCrossRefGoogle Scholar
  41. 373.
    Suplin, V., E. Fridman and U. Shaked, \(\mathcal{H}_{\infty}\) Control of Linear Uncertain Time-Delay Systems-A Projection Approach, IEEE Trans. Automat. Contr., vol. 51, 2006, pp. 680–685.MathSciNetCrossRefGoogle Scholar
  42. 174.
    Koutsoukos, X. D. and P. J. Antsaklis, Design of Stabilizing Switching Control Laws for Discrete- and Continuous-Time Linear Systems Using Piecewise-Linear Lyapunov Functions, Int. J. Contr., vol. 75, 2002, pp. 932–945.MathSciNetMATHCrossRefGoogle Scholar
  43. 196.
    Lin, H. and P. J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Automat. Contr., vol. 54, 2009, pp. 308–322.MathSciNetCrossRefGoogle Scholar
  44. 442.
    Zheng, F. and P. M. Frank, Robust Control of Uncertain Distributed Delay Systems with Application to the Stabilization of Combustion in Rocket Motor Chambers, Automatica, vol. 38, 2002, pp. 487–497.MATHCrossRefGoogle Scholar
  45. 424.
    Zhai, G., H. Lin and P. J. Antsaklis, Quadratic Stabilizability of Switched Linear Systems with Polytopic Uncertainties, Int. J. Contr., vol. 76, 2003, pp. 747–753.MathSciNetMATHCrossRefGoogle Scholar
  46. 47.
    DeCarlo, R., M. Branicky, S. Pettersson and B. Lennartson, Perspectives and Results on the Stability and Stabilizability of Hybrid Systems, Proc. IEEE, vol. 88, 2000, pp. 1069–1082.CrossRefGoogle Scholar
  47. 65.
    Fridman E. and U. Shaked, An Improved Stabilization Method for Linear Systems with Time-Delay, IEEE Trans. Automat. Contr., vol. 47, 2002, pp. 1931–1937.MathSciNetCrossRefGoogle Scholar
  48. 254.
    Mahmoud, M. S. and S. J. Saleh, Regulation of Water Quality Standards in Streams by Decentralized Control, Int. J. Contr., vol. 41, 1985, pp. 525–540.MathSciNetMATHCrossRefGoogle Scholar
  49. 188.
    Li, X. and C. de Souza, Criteria for Robust Stability and Stabilization of Test for Uncertain Linear Systems with State-Delay, Automatica, vol. 33, 1997, pp. 1657–1662.CrossRefGoogle Scholar
  50. 257.
    Mahmoud, M. S. and P. Shi, Robust Stability, Stabilization and \(\mathcal{H}_{\infty}\) Control of Time-Delay Systems with Markovian Jump Parameters, Int. J. Robust Nonlinear Contr., vol. 13, 2003, pp. 755–784.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations