Switched Systems



This chapter is concerned with the main ingredients and basic notions of switched systems. For simplicity in exposition, we present the relevant topics and materials in general perspective.


Lyapunov Function Switching Signal Average Dwell Time Switching Rule Dynamic Output Feedback 


  1. 30.
    Cao, Y. and P. M. Frank, Robust \(\mathcal{H}_{\infty}\) Disturbance Attenuation for a Class of Uncertain Discrete-Time Fuzzy Systems, IEEE Trans. Fuzzy Syst., vol. 8, 2000, pp. 406–415.CrossRefGoogle Scholar
  2. 20.
    Blondel, V. and J. Tsitsiklis, NP-hardness of Some Linear Control Design Problems, SIAM J. Contr. Optim., vol. 35, no. 6, 2007, pp. 2118–2127.MathSciNetCrossRefGoogle Scholar
  3. 75.
    Gao, H., Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks with Mixed Mode-Dependent Time-Delays, IEEE Trans. Neural Netw., vol. 20, no. 7, 2009, pp. 1102–1116.CrossRefGoogle Scholar
  4. 181.
    Lee, Y. S., Y. S. Moon, W. H. Kwon and P. G. Park, Delay-Dependent \(\mathcal{H}_{\infty}\) Control for Uncertain Systems with a State-Delay, Automatica, vol. 40, 2004, pp. 65–72.MathSciNetMATHCrossRefGoogle Scholar
  5. 216.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Marcel-Dekker, New-York, NY, 2000.MATHGoogle Scholar
  6. 333.
    Pettersson, S. and B. Lennartson, Hybrid System Stability and Robustness Verification Using Linear Matrix Inequalities, Int. J. Contr., vol. 75, 2002, pp. 1335–1355.MathSciNetMATHCrossRefGoogle Scholar
  7. 18.
    Blanchini, F., Nonquadratic Lyapunov Functions for Robust Control, Automatica, vol. 31, no. 3, 1995, pp. 451–461.MathSciNetMATHCrossRefGoogle Scholar
  8. 43.
    Dayawansa, J. M. and C. F. Martin, A Converse Lyapunov Theorem for a Class of Dynamical Systems which undergo Switching, IEEE Trans. Automat. Contr., vol. 44, no. 4, 1999, pp. 751–760.MathSciNetMATHCrossRefGoogle Scholar
  9. 302.
    Morse, A. S., (Editor), Control using Logic-Based Switching, Springer, New York, NY, 1996.Google Scholar
  10. 292.
    Michel, A., Recent Trends in the Stability Analysis of Hybrid Dynamical Systems, IEEE Trans. Circuits Syst.-Part I, 46, 1999, pp. 120–134.MATHCrossRefGoogle Scholar
  11. 28.
    Branicky, M., Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems, IEEE Trans. Automat. Contr., vol. 43, no. 4, 1998, pp. 475–582.MathSciNetMATHCrossRefGoogle Scholar
  12. 359.
    Antsaklis, P. J., (Editor), Special Issue on Hybrid Systems, Proc. IEEE, vol. 88, 2000.Google Scholar
  13. 193.
    Liberzon, D. and A. Morse, Basic Problems in Stability and Design of Switched Systems, IEEE Contr. Syst. Mag., vol. 19, no. 5, 1999, pp. 59–70.CrossRefGoogle Scholar
  14. 288.
    Mancilla-Aguilar, J. L. and R. A. Garcia, A Converse Lyapunov Theorem for Nonlinear Switched Systems, Syst. Contr. Lett., vol. 41, no. 1, 2000, pp. 67–71.MathSciNetMATHCrossRefGoogle Scholar
  15. 296.
    Molchanov A. P. and E. Pyatnitskiy, Criteria of Asymptotic Stability of Differential and Difference Inclusions Encountered in Control Theory, Syst. Contr. Lett., vol. 13, 1989, pp. 59–64.MathSciNetMATHCrossRefGoogle Scholar
  16. 217.
    Mahmoud, M. S., Robust Stability and \(\mathcal{H}_{\infty}\) Estimation for Uncertain Discrete Systems with State-Delay, J. Math. Probl. Eng., vol. 7, no. 5, 2001, pp. 393–412.MATHCrossRefGoogle Scholar
  17. 42.
    Daafouz, J., P. Riedinger and C. Lung, Stability Analysis and Control Synthesis for Switched Systems: A Hybrid Lyapunov Function Approach, IEEE Trans. Automat. Contr., vol. 47, 2002, pp. 1883–1887.CrossRefGoogle Scholar
  18. 366.
    Sun, Z. and S. S. Ge, Switched Linear Systems, Springer, London, 2005.MATHGoogle Scholar
  19. 133.
    Hespanha, J. P., Uniform Stability of Switched Linear Systems: Extensions of Lasalles Invariance Principle, IEEE Trans. Automat. Contr., vol. 49, no. 4, 2004, pp. 470–482.MathSciNetCrossRefGoogle Scholar
  20. 358.
    Morse, A. S., C. C. Pantelides, S. S. Sastry, J. M. Schumacher (Editors), Special Issue on Hybrid Systems, Automatica, vol. 34, 1999.Google Scholar
  21. 422.
    Zhai, G. and H. Lin, Control Failure Time-Analysis for Symmetric \(\mathcal{H}_{\infty}\) Control Systems, Int. J. Contr., vol. 77, 2004, pp. 598–605.MathSciNetMATHCrossRefGoogle Scholar
  22. 74.
    Gahinet, P., A. Nemirovski, A. L. Laub and M. Chilali, LMI Control Toolbox, The Math Works, Boston, MA, 1995.Google Scholar
  23. 41.
    Cuzzola, F. A. and M. Morari, A Generalized Approach for Analysis and Control of Discrete-Time Piecewise Affine and Hybrid Systems, in Hybrid Systems: Computation and Control, Di Benedetto, M. D., San Giovanni-Vincentelli, A. L. (Editors), Springer, Berlin, 2001, pp. 135–164.Google Scholar
  24. 389.
    Williams, S. M. and R. G. Hoft, Adaptive Frequency Domain Control of PPM Switched Power Line Conditioner, IEEE Trans. Power Electron., vol. 6, 1991, pp. 665–670.CrossRefGoogle Scholar
  25. 306.
    Narendra, K. S. and J. Balakrishnan, A common Lyapunov Function for Stable LTI Systems with Commuting A-Matrices, IEEE Trans. Automat. Contr., vol. 39, no. 12, 1994, pp. 2469–2471.MathSciNetMATHCrossRefGoogle Scholar
  26. 426.
    Zhai, G., B. Shu, K. Yasuda and A. N. Michel, Disturbance Attenuation Properties of Time-Controlled Switched Systems, J. Franklin Inst., vol. 338, 2001, pp. 765–779.MathSciNetMATHCrossRefGoogle Scholar
  27. 192.
    Liberzon, D., Switching in Systems and Control, Birkhauser, Boston, MA, 2003.MATHCrossRefGoogle Scholar
  28. 301.
    Moon, Y. S., P. Park, W. H. Kwon and Y. S. Lee, Delay-Dependent Robust Stabilization of Uncertain State-Delayed Systems, Int. J. Contr., vol. 74, no. 14, 2001, pp. 1447–1455.MathSciNetMATHCrossRefGoogle Scholar
  29. 27.
    Boyd, S., L. El. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, {SIAM Stud. Appl. Math}., Philadelphia, 1994.CrossRefGoogle Scholar
  30. 116.
    Han, W., Stability of Motion, Springer, New York, NY, 1967.Google Scholar
  31. 134.
    Hespanha, J. P. and A. S. Morse, Stability of Switched Systems with Average Dwell-Time, Proceedings of the 38th IEEE Conference on Decision Control, Sydney, 1999, pp. 2655–2660.Google Scholar
  32. 174.
    Koutsoukos, X. D. and P. J. Antsaklis, Design of Stabilizing Switching Control Laws for Discrete- and Continuous-Time Linear Systems Using Piecewise-Linear Lyapunov Functions, Int. J. Contr., vol. 75, 2002, pp. 932–945.MathSciNetMATHCrossRefGoogle Scholar
  33. 196.
    Lin, H. and P. J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Automat. Contr., vol. 54, 2009, pp. 308–322.MathSciNetCrossRefGoogle Scholar
  34. 19.
    Blanchini, F., S. Miani and F. Mesquine, A Separation Principle for Linear Switching Systems and Parametrization of All Stabilizing Controllers, IEEE Trans. Automat. Contr., vol. 54, 2009, pp. 279–292.MathSciNetCrossRefGoogle Scholar
  35. 424.
    Zhai, G., H. Lin and P. J. Antsaklis, Quadratic Stabilizability of Switched Linear Systems with Polytopic Uncertainties, Int. J. Contr., vol. 76, 2003, pp. 747–753.MathSciNetMATHCrossRefGoogle Scholar
  36. 47.
    DeCarlo, R., M. Branicky, S. Pettersson and B. Lennartson, Perspectives and Results on the Stability and Stabilizability of Hybrid Systems, Proc. IEEE, vol. 88, 2000, pp. 1069–1082.CrossRefGoogle Scholar
  37. 210.
    Mahmoud, M. S., Robust Performance Results for Discrete-Time Systems, J. Math. Probl. Eng. Syst., vol. 4, 1997, pp. 17–38.Google Scholar
  38. 357.
    Antsaklis, P. J. and M. Lemon (Editors), Special Issue on Hybrid Systems, IEEE Trans. Automat. Contr., vol. AC-43, 1998.Google Scholar
  39. 135.
    Hespanha, J. P. and A. S. Morse, Switching Between Stabilizing Controllers, Automatica, vol. 38, 2002, pp. 1905–1917.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations