Defective Glycosylation of Dystroglycan in Muscular Dystrophy and Cancer

  • Federica Montanaro
  • Paul T. Martin
Part of the Protein Reviews book series (PRON, volume 13)


Dystroglycan is a major cell surface receptor for extracellular matrix (ECM) proteins, including laminins, agrin, and perlecan, and glycosylation of dystroglycan by genes involved in the synthesis of its O-linked mannosyl glycans is necessary for ECM binding. Consistent with an essential role for these carbohydrate structures, loss of function mutations in genes affecting O-linked mannose biosynthesis give rise to forms of congenital and limb-girdle muscular dystrophy, and these can be mimicked by tissue-specific loss of dystroglycan in affected tissues. Because these diseases correlate with loss of dystroglycan glycosylation and function, they are referred to as the dystroglycanopathies. While mutations in all genes known to give rise to dystroglycanopathies have been shown to affect dystroglycan glycosylation, the function of some of these genes remains unknown. Dystroglycan also shows altered glycosylation or proteolytic processing, or decreased expression, in many types of cancer. Because proper glycosylation of dystroglycan is essential for ECM binding, such changes may alter cancer cell growth rate or the propensity of tumors to undergo metastasis. Increasingly, dystroglycan is also being shown to be a receptor or co-receptor for ECM-mediated signal transduction. Therefore, its role in disease may relate to its effects on signaling as well as to its more well-known structural roles in mediating cell-ECM interactions.


Muscular Dystrophy Oral Squamous Cell Carcinoma Congenital Muscular Dystrophy Lassa Fever Sarcolemmal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, M.E., Mueller, H.A., Froehner, S.C. (2001). In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J. Cell Biol. 155:113–122.PubMedCrossRefGoogle Scholar
  2. Akasaka-Manya, K., Manya, H., Endo, T. (2004). Mutations of the POMT1 gene found in patients with Walker-Warburg syndrome lead to a defect of protein O-mannosylation. Biochem. Biophys. Res. Commun. 325:75–79.PubMedCrossRefGoogle Scholar
  3. Akasaka-Manya, K., Manya, H., Nakajima, A., et al. (2006). Physical and functional association of human protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 281:19339–19345.PubMedCrossRefGoogle Scholar
  4. Angelini, C. (2004). Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol. 23:130–136.PubMedGoogle Scholar
  5. Apel, E.D., Roberds, S.L., Campbell, K.P., et al. (1995). Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 15:115–126.PubMedCrossRefGoogle Scholar
  6. Ayalon, G., Davis, J.Q., Scotland, P.B., et al. (2008). An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135:1189–1200.PubMedCrossRefGoogle Scholar
  7. Balci, B., Uyanik, G., Dincer, P., et al. (2005). An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscular Disord. 15:271–275.PubMedCrossRefGoogle Scholar
  8. Barresi, R., and Campbell, K.P. (2006). Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119:199–207.PubMedCrossRefGoogle Scholar
  9. Barresi, R., Michele, D.E., Kanagawa, M. et al. (2004). LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10:696–703.PubMedCrossRefGoogle Scholar
  10. Batchelor, C.L., Higginson, J.R., Chen, Y.J., et al. (2007). Recruitment of Dbl by ezrin and dystroglycan drives membrane proximal Cdc42 activation and filopodia formation. Cell Cycle 6:353–363.PubMedCrossRefGoogle Scholar
  11. Beedle, A.M., Nienaber, P.M., Campbell, K.P. (2007). Fukutin-related protein associates with the sarcolemmal dystrophin-glycoprotein complex. J. Biol. Chem. 282:16713–16717.PubMedCrossRefGoogle Scholar
  12. Beltran-Valero de Bernabe, D., Currier, S., Steinbrecher, A., et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71:1033–1043.PubMedCrossRefGoogle Scholar
  13. Beltran-Valero de Bernabe, D., Voit, T., Longman, C., et al. (2004). Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J. Med. Genet. 41: e61.PubMedCrossRefGoogle Scholar
  14. Beltran-Valero de Bernabe, D., Inamori, K.I., Yoshida-Moriguchi, T., et al. (2009). Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of large.J. Biol. Chem. 284(17):11279–11284.CrossRefGoogle Scholar
  15. Biancheri, R., Falace, A., Tessa, A., et al. (2007). POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem. Biophys. Res. Commun. 363:1033–1037.PubMedCrossRefGoogle Scholar
  16. Blake, D.J., Weir, A., Newey, S.E., et al. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82:291–329.PubMedGoogle Scholar
  17. Bowe, M.A., Mendis, D.B., Fallon, J.R. (2000). The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and is upregulated in dystrophic muscle. J. Cell Biol. 148:801–810.PubMedCrossRefGoogle Scholar
  18. Brenman, J.E., Chao, D.S., Xia, H., et al. (1995). Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752.PubMedCrossRefGoogle Scholar
  19. Brockington, M., Blake, D.J., Prandini, P., et al. (2001a). Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am. J. Hum. Genet. 69:1198–1209.PubMedCrossRefGoogle Scholar
  20. Brockington, M., Yuva, Y., Prandini, P., et al. (2001b). Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 14:2851–2859.CrossRefGoogle Scholar
  21. Brockington, M., Torelli, S., Prandini, P., et al. (2005). Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum. Mol. Genet. 14:657–665.PubMedCrossRefGoogle Scholar
  22. Brown, S.C., Torelli, S., Brockington, M., et al. (2004). Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164:727–737.PubMedCrossRefGoogle Scholar
  23. Butler, M.H., Douville, K., Murnane, A.A., et al. (1992). Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J. Biol. Chem. 267:6213–6218.PubMedGoogle Scholar
  24. Calogero, A., Pavoni, E., Gramaglia, T., et al. (2006). Altered expression of alpha-dystroglycan subunit in human gliomas. Cancer Biol. Ther. 5:441–448.PubMedCrossRefGoogle Scholar
  25. Cao, W., Henry, M.D., Borrow, P., et al. (1998). Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081.PubMedCrossRefGoogle Scholar
  26. Cartaud, A., Coutant, S., Petrucci, T.C., et al. (1998). Evidence for in situ and in vitro association between beta-dystroglycan and the subsynaptic 43K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. J. Biol. Chem. 273:11321–11326.PubMedCrossRefGoogle Scholar
  27. Chai, W., Yuen, C.T., Kogelberg, H., et al. (1999). High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263:879–888.PubMedCrossRefGoogle Scholar
  28. Chiba, A., Matsumura, K., Yamada, H., et al. (1997). Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J. Biol. Chem. 272:2156–2162.PubMedCrossRefGoogle Scholar
  29. Chockalingam, P.S., Cholera, R., Oak, S.A., et al. (2002). Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am. J. Physiol. Cell Physiol. 283:C500–C511.PubMedGoogle Scholar
  30. Clement, E.M., Godfrey, C., Tan, J., et al. (2008). Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch. Neurol. 65:137–141.PubMedCrossRefGoogle Scholar
  31. Cohn, R.D., Henry, M.D., Michele, D.E., et al. (2002). Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110:639–648.PubMedCrossRefGoogle Scholar
  32. Combs, A.C., and Ervasti, J.M. (2005). Enhanced laminin binding by alpha-dystroglycan after enzymatic deglycosylation. Biochem. J. 390:303–309.PubMedCrossRefGoogle Scholar
  33. Constantin, B., Sebille, S., Cognard, C. (2006). New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J. Muscle Res. Cell Motil. 27:375–386.PubMedCrossRefGoogle Scholar
  34. Cote, P.D., Moukhles, H., Lindenbaum, M., et al. (1999). Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat. Genet. 23:338–342.PubMedCrossRefGoogle Scholar
  35. Cross, S.S., Lippitt, J., Mitchell, A., et al. (2008). Expression of beta-dystroglycan is reduced or absent in many human carcinomas. Histopathology 53:561–566.PubMedCrossRefGoogle Scholar
  36. D’Amico, A., Tessa, A., Bruno, C., et al. (2006). Expanding the clinical spectrum of POMT1 phenotype. Neurology 66:1564–1567; Discussion 1461.PubMedCrossRefGoogle Scholar
  37. Darin, N., Kroksmark, A.K., Ahlander, A.C., et al. (2007). Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2I. Eur. J. Paediatr. Neurol. 11:353–357.PubMedCrossRefGoogle Scholar
  38. Ervasti, J.M., and Campbell, K.P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121–1131.PubMedCrossRefGoogle Scholar
  39. Ervasti, J.M., and Campbell, K.P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122:809–823.PubMedCrossRefGoogle Scholar
  40. Ervasti, J.M., Ohlendieck, K., Kahl, S.D., et al. (1990). Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319.PubMedCrossRefGoogle Scholar
  41. Ervasti, J.M., Burwell, A.L., Geissler, A.L. (1997). Tissue-specific heterogeneity in alpha-dystroglycan sialoglycosylation. Skeletal muscle alpha-dystroglycan is a latent receptor for Vicia villosa agglutinin b4 masked by sialic acid modification. J. Biol. Chem. 272:22315–22321.PubMedCrossRefGoogle Scholar
  42. Esapa, C.T., Benson, M.A., Schroder, J.E., et al. (2002). Functional requirements for fukutin-related protein in the Golgi apparatus. Hum. Mol. Genet. 11:3319–3331.PubMedCrossRefGoogle Scholar
  43. Ferletta, M., Kikkawa, Y., Yu, H., et al. (2003). Opposing roles of integrin alpha6Abeta1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation. Mol. Biol. Cell 14:2088–2103.PubMedCrossRefGoogle Scholar
  44. Freeze, H.H. (2006). Genetic defects in the human glycome. Nat. Rev. Genet. 7:537–551.PubMedCrossRefGoogle Scholar
  45. Frosk, P., Greenberg, C.R., Tennese, A.A., et al. (2005). The most common mutation in FKRP causing limb girdle muscular dystrophy type 2I (LGMD2I) may have occurred only once and is present in Hutterites and other populations. Hum. Mutat. 25:38–44.PubMedCrossRefGoogle Scholar
  46. Fujimura, K., Sawaki, H., Sakai, T., et al. (2005). LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem. Biophys. Res. Commun. 329:1162–1171.PubMedCrossRefGoogle Scholar
  47. Gee, S.H., Blacher, R.W., Douville, P.J., et al. (1993). Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268:14972–14980.PubMedGoogle Scholar
  48. Gee, S.H., Madhavan, R., Levinson, S.R., et al. (1998). Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 18:128–137.PubMedGoogle Scholar
  49. Godfrey, C., Escolar, D., Brockington, M., et al. (2006). Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann. Neurol. 60:603–610.PubMedCrossRefGoogle Scholar
  50. Grewal, P.K., Holzfeind, P.J., Bittner, R.E., et al. (2001). Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat. Genet. 28:151–154.PubMedCrossRefGoogle Scholar
  51. Grewal, P.K., McLaughlan, J.M., Moore, C.J., et al. (2005). Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 15:912–923.PubMedCrossRefGoogle Scholar
  52. Haliloglu, G., Gross, C., Senbil, N., et al. (2004). Clinical spectrum of muscle-eye-brain disease: from the typical presentation to severe autistic features. Acta Myol. 23:137–139.PubMedGoogle Scholar
  53. Hayashi, Y.K., Ogawa, M., Tagawa, K., et al. (2001). Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121.PubMedCrossRefGoogle Scholar
  54. Henry, M.D., and Campbell, K.P. (1999). Dystroglycan inside and out. Curr. Opin. Cell Biol. 11:602–607.PubMedCrossRefGoogle Scholar
  55. Henry, M.D., Cohen, M.B., Campbell, K.P. (2001). Reduced expression of dystroglycan in breast and prostate cancer. Hum. Pathol. 32:791–795.PubMedCrossRefGoogle Scholar
  56. Higginson, J.R., and Winder, S.J. (2005). Dystroglycan: a multifunctional adaptor protein. Biochem. Soc. Trans. 33:1254–1255.PubMedCrossRefGoogle Scholar
  57. Hoffman, E.P., Brown, R.H., Jr., Kunkel, L.M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928.PubMedCrossRefGoogle Scholar
  58. Holt, K.H., Crosbie, R.H., Venzke, D.P., et al. (2000). Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468:79–83.PubMedCrossRefGoogle Scholar
  59. Holzfeind, P.J., Grewal, P.K., Reitsamer, H.A., et al. (2002). Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large (myd) mouse defines a natural model for glycosylation-deficient muscle – eye – brain disorders. Hum. Mol. Genet. 11:2673–2687.PubMedCrossRefGoogle Scholar
  60. Ibraghimov-Beskrovnaya, O., Ervasti, J.M., Leveille, C.J., et al. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702.PubMedCrossRefGoogle Scholar
  61. Ibraghimov-Beskrovnaya, O., Milatovich, A., Ozcelik, T., et al. (1993). Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum. Mol. Genet. 2:1651–1657.PubMedCrossRefGoogle Scholar
  62. Ichimiya, T., Manya, H., Ohmae, Y., et al. (2004). The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279:42638–42647.PubMedCrossRefGoogle Scholar
  63. Ilsley, J.L., Sudol, M., Winder, S.J. (2001). The interaction of dystrophin with beta-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13:625–632.PubMedCrossRefGoogle Scholar
  64. Imperiali, M., Sporri, R., Hewitt, J., et al. (2008). Post-translational modification of (alpha)-dystroglycan is not critical for lymphocytic choriomeningitis virus receptor function in vivo. J. Gen. Virol. 89:2713–2722.PubMedCrossRefGoogle Scholar
  65. James, M., Nuttall, A., Ilsley, J.L., et al. (2000). Adhesion-dependent tyrosine phosphorylation of (beta)-dystroglycan regulates its interaction with utrophin. J. Cell Sci. 113 (Pt 10): 1717–1726.PubMedGoogle Scholar
  66. Jarad, G., and Miner, J.H. (2009). The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis 47:1–6.PubMedCrossRefGoogle Scholar
  67. Jayasinha, V., Nguyen, H.H., Xia, B., et al. (2003). Inhibition of dystroglycan cleavage causes muscular dystrophy in transgenic mice. Neuromuscular Disord. 13:365–375.PubMedCrossRefGoogle Scholar
  68. Jiang, F.X., Georges-Labouesse, E., Harrison, L.C. (2001). Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol. Med. 7:107–114.PubMedGoogle Scholar
  69. Jimenez-Mallebrera, C., Brown, S.C., Sewry, C.A., et al. (2005). Congenital muscular dystrophy: molecular and cellular aspects. Cell. Mol. Life Sci. 62:809–823.PubMedCrossRefGoogle Scholar
  70. Jimenez-Mallebrera, C., Torelli, S., Feng, L., et al. (2008). A comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of alpha-dystroglycan does not consistently correlate with clinical severity. Brain Pathol. 19(4):596–611.PubMedCrossRefGoogle Scholar
  71. Jing, J., Lien, C.F., Sharma, S., et al. (2004). Aberrant expression, processing and degradation of dystroglycan in squamous cell carcinomas. Eur. J. Cancer 40:2143–2151.PubMedCrossRefGoogle Scholar
  72. Kanagawa, M., Saito, F., Kunz, S., et al. (2004). Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964.PubMedCrossRefGoogle Scholar
  73. Kanagawa, M., Nishimoto, A., Chiyonobu, T., et al. (2009). Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum. Mol. Genet. 18:621–631.PubMedCrossRefGoogle Scholar
  74. Kobayashi, K., Nakahori, Y., Miyake, M., et al. (1998). An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392.PubMedCrossRefGoogle Scholar
  75. Kobuke, K., Piccolo, F., Garringer, K.W., et al. (2008). A common disease-associated missense mutation in alpha-sarcoglycan fails to cause muscular dystrophy in mice. Hum. Mol. Genet. 17:1201–1213.PubMedCrossRefGoogle Scholar
  76. Koenig, M., Hoffman, E.P., Bertelson, C.J., et al. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517.PubMedCrossRefGoogle Scholar
  77. Kunz, S., Sevilla, N., McGavern, D.B., et al. (2001). Molecular analysis of the interaction of LCMV with its cellular receptor [alpha]-dystroglycan. J. Cell Biol. 155:301–310.PubMedCrossRefGoogle Scholar
  78. Kurahashi, H., Taniguchi, M., Meno, C., et al. (2005). Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol. Dis. 19:208–217.PubMedCrossRefGoogle Scholar
  79. Langenbach, K.J., and Rando, T.A. (2002). Inhibition of dystroglycan binding to laminin disrupts the PI3K/AKT pathway and survival signaling in muscle cells. Muscle Nerve 26:644–653.PubMedCrossRefGoogle Scholar
  80. Leschziner, A., Moukhles, H., Lindenbaum, M., et al. (2000). Neural regulation of alpha-dystroglycan biosynthesis and glycosylation in skeletal muscle. J. Neurochem. 74:70–80.PubMedCrossRefGoogle Scholar
  81. Li, Y., Huang, J., Zhao, Y.L., et al. (2007). UTRN on chromosome 6q24 is mutated in multiple tumors. Oncogene 26:6220–6228.PubMedCrossRefGoogle Scholar
  82. Longman, C., Brockington, M., Torelli, S., et al. (2003). Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum. Mol. Genet. 12:2853–2861.PubMedCrossRefGoogle Scholar
  83. Losasso, C., Di Tommaso, F., Sgambato, A., et al. (2000). Anomalous dystroglycan in carcinoma cell lines. FEBS Lett. 484:194–198.PubMedCrossRefGoogle Scholar
  84. Louhichi, N., Triki, C., Quijano-Roy, S., et al. (2004). New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 5:27–34.PubMedCrossRefGoogle Scholar
  85. Love, D.R., Forrest, S.M., Smith, T.J., et al. (1989). Molecular analysis of Duchenne and Becker muscular dystrophies. Br. Med. Bull. 45:659–680.PubMedGoogle Scholar
  86. MacLeod, H., Pytel, P., Wollmann, R., et al. (2007). A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscular Disord. 17:285–289.PubMedCrossRefGoogle Scholar
  87. Manya, H., Sakai, K., Kobayashi, K., et al. (2003). Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle-eye-brain disease. Biochem. Biophys. Res. Commun. 306:93–97.PubMedCrossRefGoogle Scholar
  88. Manya, H., Chiba, A., Yoshida, A., et al. (2004). Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101:500–505.PubMedCrossRefGoogle Scholar
  89. Manya, H., Suzuki, T., Akasaka-Manya, K., et al. (2007). Regulation of mammalian protein O-mannosylation: preferential amino acid sequence for O-mannose modification. J. Biol. Chem. 282:20200–20206.PubMedCrossRefGoogle Scholar
  90. Martin, P.T. (2003a). Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13:55R–66R.PubMedCrossRefGoogle Scholar
  91. Martin, P.T. (2003b). Glycobiology of the neuromuscular junction. J. Neurocytol. 32:915–929.PubMedCrossRefGoogle Scholar
  92. Martin, P.T. (2006). Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage. Nat. Clin. Pract. Neurol. 2:222–230.PubMedCrossRefGoogle Scholar
  93. Martin, P.T., and Freeze, H.H. (2003). Glycobiology of neuromuscular disorders. Glycobiology 13:67R–75R.PubMedCrossRefGoogle Scholar
  94. Martin, P.T., Scott, L.J., Porter, B.E., et al. (1999). Distinct structures and functions of related pre- and postsynaptic carbohydrates at the mammalian neuromuscular junction. Mol. Cell. Neurosci. 13:105–118.PubMedCrossRefGoogle Scholar
  95. Martin, L.T., Glass, M., Dosunmu, E., et al. (2007). Altered expression of natively glycosylated alpha dystroglycan in pediatric solid tumors. Hum. Pathol. 38:1657–1668.PubMedCrossRefGoogle Scholar
  96. Martin, P.T., Shelton, G.D., Dickinson, P.J., et al. (2008). Muscular dystrophy associated with alpha-dystroglycan deficiency in Sphynx and Devon Rex cats. Neuromuscular Disord. 18:942–952.PubMedCrossRefGoogle Scholar
  97. Matsumura, K., Ervasti, J.M., Ohlendieck, K., et al. (1992). Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360:588–591.PubMedCrossRefGoogle Scholar
  98. McCubrey, J.A., Steelman, L.S., Chappell, W.H., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773:1263–1284.PubMedCrossRefGoogle Scholar
  99. Mendell, J.R., Boue, D.R., Martin, P.T. (2006). The congenital muscular dystrophies: recent advances and molecular insights. Pediatr. Dev. Pathol. 9:427–443.PubMedCrossRefGoogle Scholar
  100. Michele, D.E., and Campbell, K.P. (2003). Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J. Biol. Chem. 278:15457–15460.PubMedCrossRefGoogle Scholar
  101. Michele, D.E., Barresi, R., Kanagawa, M., et al. (2002). Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418:417–422.PubMedCrossRefGoogle Scholar
  102. Moore, C.J., and Hewitt, J.E. (2009). Dystroglycan glycosylation and muscular dystrophy. Glycoconj. J. 26:349–357.PubMedCrossRefGoogle Scholar
  103. Moore, S.A., Saito, F., Chen, J., et al. (2002). Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418:422–425.PubMedCrossRefGoogle Scholar
  104. Moore, C.J., Goh, H.T., and Hewitt, J.E. (2008). Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92:159–167.PubMedCrossRefGoogle Scholar
  105. Muntoni, F., Torelli, S., Brockington, M. (2008). Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5:627–632.PubMedCrossRefGoogle Scholar
  106. Murakami, T., Hayashi, Y.K., Noguchi, S., et al. (2006). Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol. 60:597–602.PubMedCrossRefGoogle Scholar
  107. Muschler, J., Levy, D., Boudreau, R., Henry, M., et al. (2002). A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res. 62:7102–7109.PubMedGoogle Scholar
  108. Newey, S.E., Howman, E.V., Ponting, C.P., et al. (2001). Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J. Biol. Chem. 276:6645–6655.PubMedCrossRefGoogle Scholar
  109. Nguyen, H.H., Jayasinha, V., Xia, B., et al. (2002). Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc. Natl. Acad. Sci. U.S.A. 99:5616–5621.PubMedCrossRefGoogle Scholar
  110. Nishimune, H., Valdez, G., Jarad, G., et al. (2008). Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J. Cell Biol. 182:1201–1215.PubMedCrossRefGoogle Scholar
  111. Oak, S.A., Zhou, Y.W., Jarrett, H.W. (2003). Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278:39287–39295.PubMedCrossRefGoogle Scholar
  112. Ohlendieck, K., Ervasti, J.M., Matsumura, K., et al. (1991). Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7:499–508.PubMedCrossRefGoogle Scholar
  113. Patnaik, S.K., and Stanley, P. (2005). Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J. Biol. Chem. 280:20851–20859.PubMedCrossRefGoogle Scholar
  114. Patton, B.L., Miner, J.H., Chiu, A.Y., et al. (1997). Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J. Cell Biol. 139:1507–1521.PubMedCrossRefGoogle Scholar
  115. Peters, M.F., Adams, M.E., Froehner, S.C. (1997). Differential association of syntrophin pairs with the dystrophin complex. J. Cell Biol. 138:81–93.PubMedCrossRefGoogle Scholar
  116. Peters, M.F., Sadoulet-Puccio, H.M., Grady, M.R., et al. (1998). Differential membrane localization and intermolecular associations of alpha-dystrobrevin isoforms in skeletal muscle. J. Cell Biol. 142:1269–1278.PubMedCrossRefGoogle Scholar
  117. Poon, E., Howman, E.V., Newey, S.E., et al. (2002). Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J. Biol. Chem. 277:433–3439.Google Scholar
  118. Rambukkana, A., Yamada, H., Zanazzi, G., et al. (1998). Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282:2076–2079.PubMedCrossRefGoogle Scholar
  119. Reilich, P., Petersen, J.A., Vielhaber, S., et al. (2006). LGMD 2I due to the common mutation 826C > A in the FKRP gene presenting as myopathy with vacuoles and paired-helical filaments. Acta Myol. 25:73–76.PubMedGoogle Scholar
  120. Reynolds, J.G., McCalmon, S.A., Donaghey, J.A., et al. (2008). Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J. Biol. Chem. 283:8070–8074.PubMedCrossRefGoogle Scholar
  121. Rezniczek, G.A., Konieczny, P., Nikolic, B., et al. (2007). Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J. Cell Biol. 176:965–977.PubMedCrossRefGoogle Scholar
  122. Russo, K., Di Stasio, E., Macchia, G., et al. (2000). Characterization of the beta-dystroglycan-growth factor receptor 2 (Grb2) interaction. Biochem. Biophys. Res. Commun. 274:93–98.PubMedCrossRefGoogle Scholar
  123. Sadasivam, G., Willmann, R., Lin, S., et al. (2005). Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors. J. Neurosci. 25:10479–10493.PubMedCrossRefGoogle Scholar
  124. Saito, F., Moore, S.A., Barresi, R., et al. (2003). Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38:747–758.PubMedCrossRefGoogle Scholar
  125. Saito, F., Masaki, T., Saito, Y., et al. (2007). Defective peripheral nerve myelination and neuromuscular junction formation in fukutin-deficient chimeric mice. J. Neurochem. 101:1712–1722.PubMedCrossRefGoogle Scholar
  126. Santhanakrishnan, M., Ray, K., Oppenheimer, K., et al. (2008). Dynamic regulation of alpha-dystroglycan in mouse placenta. Placenta 29:932–936.PubMedCrossRefGoogle Scholar
  127. Sasaki, T., Yamada, H., Matsumura, K., et al. (1998). Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan. Biochim. Biophys. Acta 1425:599–606.PubMedCrossRefGoogle Scholar
  128. Sato, S., Omori, Y., Katoh, K., et al. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11:923–931.PubMedCrossRefGoogle Scholar
  129. Satz, J.S., Barresi, R., Durbeej, M., et al. (2008). Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J. Neurosci. 28:10567–10575.PubMedCrossRefGoogle Scholar
  130. Schneider, M., and Baumgartner, S. (2008). Differential expression of Dystroglycan-spliceforms with and without the mucin-like domain during Drosophila embryogenesis. Fly (Austin) 2, 29–35.Google Scholar
  131. Sgambato, A., and Brancaccio, A. (2005). The dystroglycan complex: from biology to cancer. J. Cell Physiol. 205:163–169.PubMedCrossRefGoogle Scholar
  132. Sgambato, A., Migaldi, M., Montanari, M., et al. (2003). Dystroglycan expression is frequently reduced in human breast and colon cancers and is associated with tumor progression. Am. J. Pathol. 162:849–860.PubMedCrossRefGoogle Scholar
  133. Sgambato, A., Camerini, A., Faraglia, B., et al. (2004). Increased expression of dystroglycan inhibits the growth and tumorigenicity of human mammary epithelial cells. Cancer Biol. Ther. 3: 967–975.PubMedCrossRefGoogle Scholar
  134. Sgambato, A., Tarquini, E., Resci, F., et al. (2006). Aberrant expression of alpha-dystroglycan in cervical and vulvar cancer. Gynecol. Oncol. 103:397–404.PubMedCrossRefGoogle Scholar
  135. Sgambato, A., Camerini, A., Amoroso, D., et al. (2007a). Expression of dystroglycan correlates with tumor grade and predicts survival in renal cell carcinoma. Cancer Biol. Ther. 6:1840–1846.PubMedGoogle Scholar
  136. Sgambato, A., De Paola, B., Migaldi, M., et al. (2007b). Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J. Cell Physiol. 213:528–539.PubMedCrossRefGoogle Scholar
  137. Singh, J., Itahana, Y., Knight-Krajewski, S., et al. (2004). Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 64:6152–6159.PubMedCrossRefGoogle Scholar
  138. Smalheiser, N.R. and Kim, E. (1995). Purification of cranin, a laminin binding membrane protein. Identity with dystroglycan and reassessment of its carbohydrate moieties. J. Biol. Chem. 270:15425–15433.PubMedCrossRefGoogle Scholar
  139. Smalheiser, N.R., Haslam, S.M., Sutton-Smith, M., et al. (1998). Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in cranin (dystroglycan) purified from sheep brain. J. Biol. Chem. 273:23698–23703.PubMedCrossRefGoogle Scholar
  140. Sotgia, F., Lee, H., Bedford, M.T., et al. (2001). Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins. Biochemistry 40:14585–14592.PubMedCrossRefGoogle Scholar
  141. Spence, H.J., Chen, Y.J., Batchelor, C.L., et al. (2004a). Ezrin-dependent regulation of the actin cytoskeleton by beta-dystroglycan. Hum. Mol. Genet. 13:1657–1668.PubMedCrossRefGoogle Scholar
  142. Spence, H.J., Dhillon, A.S., James, M., et al. (2004b). Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep. 5:484–489.PubMedCrossRefGoogle Scholar
  143. Stone, M.R., O’Neill, A., Catino, D., et al. (2005). Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol. Biol. Cell 16:4280–4293.PubMedCrossRefGoogle Scholar
  144. Straub, V., and Bushby, K. (2006). The childhood limb-girdle muscular dystrophies. Semin Pediatr. Neurol. 13:104–114.PubMedCrossRefGoogle Scholar
  145. Sugita, S., Saito, F., Tang, J., et al. (2001). A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154:435–445.PubMedCrossRefGoogle Scholar
  146. Taniguchi, M., Kurahashi, H., Noguchi, S., et al. (2006). Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies. Hum. Mol. Genet. 15:1279–1289.PubMedCrossRefGoogle Scholar
  147. Thompson, T.G., Chan, Y.M., Hack, A.A., et al. (2000). Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein. J. Cell Biol. 148:115–126.PubMedCrossRefGoogle Scholar
  148. Thompson, O., Kleino, I., Crimaldi, L., et al. (2008). Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS ONE 3: e3638.PubMedCrossRefGoogle Scholar
  149. Timpl, R., Tisi, D., Talts, J.F., et al. (2000). Structure and function of laminin LG modules. Matrix Biol. 19:309–317.PubMedCrossRefGoogle Scholar
  150. Topaloglu, H., Brockington, M., Yuva, Y., et al. (2003). FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology 60:988–992.PubMedCrossRefGoogle Scholar
  151. Torelli, S., Brown, S.C., Brockington, M., et al. (2005). Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I. Neuromuscular Disord. 15:836–843.PubMedCrossRefGoogle Scholar
  152. Ursitti, J.A., Lee, P.C., Resneck, W.G., et al. (2004). Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J. Biol. Chem. 279:41830–41838.PubMedCrossRefGoogle Scholar
  153. Vainzof, M., Passos-Bueno, M.R., Canovas, M., et al. (1996). The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum. Mol. Genet. 5:1963–1969.PubMedCrossRefGoogle Scholar
  154. van Reeuwijk, J., Janssen, M., van den Elzen, C., et al. (2005). POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J. Med. Genet. 42:907–912.PubMedCrossRefGoogle Scholar
  155. van Reeuwijk, J., Grewal, P.K., Salih, M.A., et al. (2007). Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum. Genet. 121:685–690.PubMedCrossRefGoogle Scholar
  156. Vandebrouck, A., Sabourin, J., Rivet, J., et al. (2007). Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J. 21:608–617.PubMedCrossRefGoogle Scholar
  157. Wakayama, Y., Inoue, M., Kojima, H., et al. (2008). Reduced expression of sarcospan in muscles of Fukuyama congenital muscular dystrophy. Histol. Histopathol. 23:1425–1438.PubMedGoogle Scholar
  158. Weir, M.L., Oppizzi, M.L., Henry, M.D., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. J. Cell Sci. 119:4047–4058.PubMedCrossRefGoogle Scholar
  159. Willer, T., Valero, M.C., Tanner, W., et al. (2003). O-mannosyl glycans: from yeast to novel associations with human disease. Curr. Opin. Struct. Biol. 13:621–630.PubMedCrossRefGoogle Scholar
  160. Willer, T., Prados, B., Falcon-Perez, J.M., et al. (2004). Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101:14126–14131.PubMedCrossRefGoogle Scholar
  161. Williams, I.A., and Allen, D.G. (2007). Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol 292: H846–H855.PubMedCrossRefGoogle Scholar
  162. Williams, J.C., Armesilla, A.L., Mohamed, T.M., et al. (2006). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem. 281:23341–23348.PubMedCrossRefGoogle Scholar
  163. Williamson, R.A., Henry, M.D., Daniels, K.J., et al. (1997). Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum. Mol. Genet. 6:831–841.PubMedCrossRefGoogle Scholar
  164. Xia, B., Hoyte, K., Kammesheidt, A., et al. (2002). Overexpression of the CT GalNAc transferase in skeletal muscle alters myofiber growth, neuromuscular structure, and laminin expression. Dev. Biol. 242:58–73.PubMedCrossRefGoogle Scholar
  165. Xiong, H., Kobayashi, K., Tachikawa, M., et al. (2006). Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan. Biochem. Biophys. Res. Commun. 350:935–941.PubMedCrossRefGoogle Scholar
  166. Xiong, Y., Zhou, Y., Jarrett, H.W. (2009). Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner. J. Cell Physiol. 219:402–414.PubMedCrossRefGoogle Scholar
  167. Yamada, H., Saito, F., Fukuta-Ohi, H., et al. (2001). Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum. Mol. Genet. 10:1563–1569.PubMedCrossRefGoogle Scholar
  168. Yang, B., Jung, D., Motto, D., et al. (1995). SH3 domain-mediated interaction of dystroglycan and Grb2. J. Biol. Chem. 270:11711–11714.PubMedCrossRefGoogle Scholar
  169. Yoshida, A., Kobayashi, K., Manya, H., et al. (2001). Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1:717–724.PubMedCrossRefGoogle Scholar
  170. Yurchenco, P.D., Cheng, Y.S., Campbell, K., et al. (2004). Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. J. Cell Sci. 117: 735–742.PubMedCrossRefGoogle Scholar
  171. Zhan, Y., Tremblay, M.R., Melian, N., et al. (2005). Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J. Biol. Chem. 280:18015–18024.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Pediatrics and of Physiology and Cell Biology, Center for Gene Therapy, The Research Institute at Nationwide Children’s HospitalOhio State University College of MedicineColumbusUSA

Personalised recommendations